Estimation of Roughness Length of Beijing Area based on Satellite Data and GIS Technique

  • LIU Yonghong ,
  • FANG Xiaoyi ,
  • LUAN Qingzu
Expand
  • Beijing Municipal Climate Center, Beijing 100089, China;Institute of Beijing Urban Meteorology, China Meteorological Administration, Beijing 100089, China

Received date: 2015-03-30

  Online published: 2016-12-28

Abstract

A method is established in this paper for estimating aerodynamic roughness length Z0 for vegetation region and urban area on regional scale. Based on satellite data and GIS techniques and morphological model, three key parameters, vegetation types, canopy leaf area index (LAI) and plant height, are taken as inputs to estimate the Z0 for vegetation region. And buildings density and height are involved to calculate the Z0 for urban area. With the proposed model, the Z0 of vegetation region with resolution 1 km are estimated firstly. Here the vegetation canopy LAIs are derived from Moderate-Resolution Imaging Spectro radiometer (MODIS) satellite data in 2012. The height of forest is estimated with Geoscience Laser Altimeter System (GLAS) satellite data in 2005. And the height of crop is phonological constant. Then the Z0 with resolution 100 m within urban region is estimated with 1:2000 basic geographical data. To validate the results the existing similar researches are involved into comparing and analysis. The results show that in 2012 the Z0 is 0~1.3 m in vegetation region, and the generalized roughness length Z0/Zh is 0.01~0.13, which varies distinctly according to the seasons. Generally, the Z0 is 0.6~1.3 m in mountainous forests, and Z0/Zh 0.06~0.10, which is higher in winter than in summer. While for the farmland in plain region, the Z0 is 0~0.4 m, and Z0/Zh 0.01~0.13, higher in summer than in winter. For Z0 in urban area, generally 0.1~8.0 m, there exists obvious spatial variation which demonstrate the strong heterogeneity of the surface. The regions with Z0 higher than 1.0 m include area inside the forth-ring, and the large residential community, economic development zone outside the forth-ring, and country center in suburbs. Inside the second-ring region, there is a zone with low values, lower than 0.5 m. The estimated Z0 value around the atmospheric tower, a typical urban scientific experiment plot with 325 m high in Beijing urban area, is 4.0~9.0 m, which is consistent with the results based on metrological methods. Our results have demonstrated the proposed method is reasonable and credible in the study area, which also indicates that remote sensing and GIS technology is a valid approach to estimate aerodynamic parameters of complicated underlying surface at regional scale.

Cite this article

LIU Yonghong , FANG Xiaoyi , LUAN Qingzu . Estimation of Roughness Length of Beijing Area based on Satellite Data and GIS Technique[J]. Plateau Meteorology, 2016 , 35(6) : 1625 -1638 . DOI: 10.7522/j.issn.1000-0534.2015.00068

References

[1]Borak J S,Jasinski M F,Crago R. 2005. Time series vegetation aerodynamic roughness fields estimated from MODIS observations[J]. Agricultural and Forest Meteorology,135(1-4):252-268.
[2]Burian S J,Augustus N,Jeyachandran I,et al. 2007. National building statistics database,version 2[R]. Los Alamos National Laboratory unclassified report.
[3]Grimmond C S B,King T S,Roth M,et al. 1998. Aerodynamically roughness of urban areas:Derived from wind observations[J]. Boun-Layer Meteor,89(1):1-24.
[4]Grimmond C S B,Oke T R. 1999. Aerodynamic properties of urban areas derived from analysis of surface form[J]. J Appl Meteor,38(9):1262-1292.
[5]Lindroth A. 1993. Aerodynamic and canopy resistance of short-rotation forest in relation to leaf area index and climate[J]. Boun-Layer Meteor,66(3):265-279.
[6]Liu G,Sun J N. 2010. Impact of surface variations on the momentum flux above the urban canopy[J]. Theor Appl Climatol,101(3-4):411-419.
[7]Jasinski M F,Crago R. 1999. Estimation of vegetation aerodynamic roughness of natural regions using frontal area density determined from satellite imagery[J]. Agricultural and Forest Meteorology,94(1):65-77.
[8]Jasinski M F,Borak J,Crago R. 2005. Bulk surface momentum parameters for satellite-derived vegetation fields[J]. Agricultural and Forest Meteorology,133(1-4):55-68.
[9]Raupach M R. 1994. Simplified expressions for vegetation roughness length and zero-plane displacement as a function of canopy height and area index[J]. Bound-Layer Meteor,71(1-2):211-216.
[10]Schaudt K J,Dickinsonb R E. 2000. An approach to deriving roughness length and zero-plane displacement height from satellite data,prototyped with BOREAS data[J]. Agricultural and Forest Meteorology,104(2):143-155.
[11]Simard M,Pinto N,Fisher J B,et al. 2011. Mapping forest canopy height globally with spaceborne lidar[J],J Geophys Res,116:G04021. DOI:10.1029/2011JG001708.
[12]Wieringa J. 1992. Updating the davenport roughness classification[J]. Journal of Wind Engineering and Industrial Aerodynamics,41(1):357-368.
[13]Zeng X B,Shaikh M,Dai Y J,et al. 2002. Coupling of the common land model to the NCAR community climate model[J]. J Climate,15(14):1832-1854.
[14]Cai Fu,Zhou Gguangsheng,Ming Hhuiqing,et al. 2013. Dynamics of aerodynamic parameters over a rainfed maize agroecosystem and their relationships with controlling factors[J]. Acta Ecologica Sinica,33(17):5339-5352.<br/>蔡福,周广胜,明惠青,等,2013. 玉米农田空气动力学参数动态及其与影响因子的关系[J]. 生态学报,33(17):5339-5352.
[15]Chen Bin,Xu Xiangde,Ding Yuguo,et al. 2010. The impact of heterogeneity of land surface roughness length on estimation of turbulent flux in model[J]. Plateau Meteor,29(2):340-348.<br/>陈斌,徐祥德,丁裕国,等. 2010. 地表粗糙度非均匀性对模式湍流通量计算的影响[J]. 高原气象,29(2):340-348.
[16]Cui Guofa,Cheng Kewu,et al. 2000. Status and classification of vegetation in Labagoumen forest region in Beijing[J]. Journal of Beijing Forestry University,22(4):46-51.<br/>崔国发,成克武,申国珍,等. 2000. 北京喇叭沟门林区森林植被现状及分类[J]. 北京林业大学学报,22(4):46-51.
[17]Gao Zhiqiu,Bian Lingen,Lu Changgui,et al. 2002. Estimation of aerodynamic parameters in urban areas[J]. J Appl Meteor Sci,13(special):26-33.<br/>高志球,卞林根,逯昌贵,等. 2002. 城市下垫面空气动力学参数的估算[J]. 气象应用报,13(特刊):26-33.
[18]Han Suqin,Liu Binxian,Xie Yiyang. 2008. Research of urbanization on surface roughness with 255 m meteorological tower[J]. Meteor Mon,34(1):54-58.<br/>韩素芹,刘彬贤,解以扬. 2008. 利用255 m铁塔研究城市化对地面粗糙度的影响[J]. 气象,34(1):54-58.
[19]He Qijin,Zhou Guangsheng,Zhou Li,et al. 2007. Dynamic characteristics of aerodynamic parameters in Panjin reed wetland and their controlling factors[J]. J Meteor Environ,23(4):7-12.<br/>何奇瑾,周广胜,周莉,等. 2007. 盘锦芦苇湿地空气动力学参数动态特征及其影响因素分析[J]. 气象与环境学报,23(4):7-12.
[20]Hu Zhangbao,Yu Bingfeng. 2008. Review on methods calculating aerodynamic parameters over urban underlying surface[J]. J Meteor Environ,24(5):55-60.<br/>胡张保,俞炳丰. 2008. 城市下垫面空气动力学参数确定方法综述[J]. 气象与环境学报,24(5):55-60.
[21]Li Qian,Liu Huizhi,Hu Fei,et al. 2003. The determination of the aerodynamical parameters over urban land surface[J]. Climatic Environ Res,8(4):443-450.<br/>李倩,刘辉志,胡非,等. 2003. 城市下垫面空气动力学参数的确定[J]. 气候与环境研究,8(4):443-450.
[22]Li Qinyi,Cai Xuhui,Song Yu. 2014. Research of the distribution of national scale surface roughness length with high resolution in China[J]. Plateau Meteor,33(2):474-482. DOI:10.7522/j. issn. 1000-0534.2012.00191.<br/>李沁怡,蔡旭晖,宋宇. 2014. 中国高分辨率地表粗糙度分布研究[J]. 高原气象,33(2):474-482.
[23]Liu Heping,Zhu Tingyao. 1997. Determination of aerodynamic parameters of Changbai Mountain forest[J]. Acta Scientiarum Universitatis Pekinenesis,33(4):522-528.<br/>刘和平,朱廷曜. 1997. 森林冠层空气动力学参数的确定[J]. 北京大学学报(自然科学版),33(4):522-528.
[24]Lu Longhua,Bian Lingen,Cheng Yanjie,et al. 2002. Meteorological characteristics of the ground layer in Beijing in winter[J]. J Appl Meteor Sci,13(special):34-42.<br/>陆龙骅,卞林根,程彦杰,等. 2002. 冬季北京城市近地层的气象特征[J]. 应用气象学报,13(特刊):34-42.
[25]Mei Fanming,Jiang Chanwen,Jiang Shanshan,et al. 2002. The integrated effects of roughness elements geometric parameters on aerodynamic roughness length[J]. J Desert Res,32(6):1534-1541.<br/>梅凡民,蒋缠文,江姗姗,等. 2002. 粗糙元几何参数的交互作用对床面空气动力学粗糙度的影响[J]. 中国沙漠,32(6):1534-1541.
[26]Qin Wenhan. 1994. Aerodynamic parameters of crop canopies estimated with a center-of-pressure technique[J]. Acta Meteor Sinica,52(1):99-106.<br/>覃文汉. 1994. 应用压力中心法确定农田空气动力参数[J]. 气象学报,52(1):99-106.
[27]Shi Xuefeng,Xia Jjianxin,Ji Zuwen,et al. 2006. A review:the study in relationship between aerodynamic roughness length and the characteristics of vegetation[J]. Journal of the CUN(Natural Sciences Edition),15(3):218-225.<br/>石雪峰,夏建新,吉祖稳,等. 2006. 空气动力学粗糙度与植被特征关系的研究进展[J]. 中央民族大学学报(自然科学版),15(3):218-225.
[28]Song Xiu Yu. 2010. Study of main arbor construction characteristic of water conservation forest of Miyun reservoir upstream-a case of Chaoguanxigou tree farm[J]. China Soil and Water Conservation,(4):54-57.<br/>宋秀瑜. 2010. 密云水库上游水源涵养林主要乔木结构特征研究-以潮关西沟林场为例[J]. 中国水土保持,(4):54-57.
[29]Xu Yangyang,Liu Shuhua,Hu Fei,et al. 2009. Influence of Beijing urbanization on the characteristics of atmospheric boundary layer[J]. Chinese J Atmos Sci,33(4):859-867.<br/>徐阳阳,刘树华,胡非,等. 2009. 北京城市化发展对大气边界层特性的影响[J]. 大气科学,33(4):859-867.
[30]Yang Aqiang,Sun Guoqing,Lu Lixin,et al. 2011. Deriving aerodynamic roughness length and zero-plane displacement height from MODIS product for Eastern China[J]. J Meteor Sci,31(4):516-524.<br/>杨阿强,孙国清,卢立新,等. 2011. 基于MODIS 资料的中国东部时间序列空气动力学粗糙度和零平面位移高度估算[J]. 气象科学,31(4):516-524.
[31]Yang Yaoxian,Li Maoshan,Hu Zeyong,et al. 2014. Influence of surface roughness on surface-air fluxes in alpine meadow over the Northern Qinghai-Xizang Plateau[J]. Plateau Meteor,33(3):626-636. DOI:10.7522/j. issn. 1000-0534.2013.00199.<br/>杨耀先,李茂善,胡泽勇,等. 2014. 藏北高原高寒草甸地表粗糙度对地气通量的影响[J]. 高原气象,33(3):626-636.
[32]Zhang Qiang,Lü Shihua. 2003. The determination of roughness length over city surface[J]. Plateau Meteor,22(1):24-32.<br/>张强,吕世华. 2003. 城市表面粗糙度长度的确定[J]. 高原气象,22(1):24-32.
[33]Zhang Xueshi,Jiang Yan,Xue Jianhui,et al. 2010. Aerodynamic parameters of secondary oak forest in Xiashu Jurong county of Jiangsu province[J]. Journal of Nanjing Forestry University(Natural Science Edition),34(6):61-65.<br/>张学仕,蒋琰,薛建辉,等. 2010. 江苏句容下蜀次生栎林的空气动力学参数研究[J]. 南京林业大学学报(自然科学版),34(6):61-65.
[34]Zhong Zhong,Han Sshijie. 2002. The calculation of aerodynamic parameters of Korea Pine canopy in Changbai Mountains[J]. Journal of Nanjing University(Natural Sciences Edition),38(4):565-571.<br/>钟中,韩士杰. 2002. 长白山阔叶红松林冠层空气动力学参数的计算[J]. 南京大学学报(自然科学),38(4):565-571.
[35]Zhao Xiaosong,Guan Dexin,Wu Jiabin,et al. 2004. Zero-plane displacement and roughness length of the mixed forest of broad-leaved and Korean-pine in Changbai Mountain[J]. Chinese Journal of Ecology,23(5):84-88.<br/>赵晓松,关德新,吴家兵,等. 2004. 长白山阔叶红松林的零平面位移和粗糙度[J]. 生态学杂志,23(5):84-88.
[36]Zhou Yanlian,Sun Xiaomin,Zhu Zhilin,et al. 2006. Dynamic change of some different surface roughness length and influence on simulation of flux mechanism model[J]. Science in China(Series D),36(suppl):244-254.<br/>周艳莲,孙晓敏,朱治林,等. 2006. 几种不同下垫面地表粗糙度动态变化及其对通量机理模型模拟的影响[J]. 中国科学D辑,36(增刊1):244-254.
[37]Zhou Zhiqiang,Yue Cairong,Xu Tianshu,et al. 2012. A review of estimation of remote sensing for forest height[J]. Modern Agriculture Science and Technology,(2):198-199.<br/>周志强,岳彩荣,徐天蜀,等. 2012. 森林高度遥感估测研究综述[J]. 现代农业科技,(2):198-199.
[38]Wang Jinxing,Bian Lingen,Gao Zhiqiu,et al. 2002. Observation Study of urban boundary layer turbulence and aerodynamic parameters of underlying surface[J]. Meteor Sci Technol,30(2):65-72.<br/>王金星,卞林根,高志球,等. 2002. 城市边界层湍流和下垫面空气动力学参数观测研究[J]. 气象科技,30(2):65-72.
[39]Wang Xiuxin,Sun Tao,Zhu Qijiang,et al. 2014. Assessment of different methods for estimating forest leaf area index from remote sensing data[J]. Acta Ecologica Sinica,34(16):4612-4619.<br/>王修信,孙涛,朱启疆,等. 2014. 林地叶面积指数遥感估算方法适用分析[J]. 生态学报,34(16):4612-4619.
[40]Wang Yuyu,Yao Jimin,Han Haidong,et al. 2014.Analysis of aerodynamic roughness of the debris-covered Keqicar Glacier[J]. Plateau Meteor,33(3):762-768. DOI:10.7522/j. issn. 1000-0534.2013.00140.<br/>王玉玉,姚济敏,韩海东,等. 2014. 科其喀尔冰川表碛区空气动力学粗糙度分析[J]. 高原气象,33(3):762-768,
Outlines

/