Analysis of Cloud Microphysical Characteristics on a Precipitation Stratocumulus

  • DANG Juan ,
  • LIU Weiguo ,
  • TAO Yue
Expand
  • Weather Modification Center of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China

Received date: 2015-03-20

  Online published: 2016-12-28

Abstract

The precipitation process is closely related to cloud microphysical characteristics in addition to cloud macroscopically dynamic and thermodynamic conditions. The mixed phase stratiform cloud system is main target of rainfall enhancement over Northwest of China. To understand the precipitation mechanism and develop scientifically operation of precipitation enhancement, it is necessary to study microphysical structure characteristics of the kind of cloud system in depth. Using the cloud physical data measured by airplane in a stratocumulus precipitation process in southeast of Gansu province on 29 June 2004, the microphysical structural characteristics of stratocumulus cloud system were researched. The synoptic background, precipitation and cloud system evolution during flight measurement were presented, and the cloud microphysical characteristics including number concentration, scale size, 2D image and size distribution of cloud particles at different height levels and horizontal level near stratocumulus top were analyzed. The observation indicates the cloud system is consisted of upper pure cold altocumulus and lower stratocumulus. The study shows that vertical and horizontal distribution characteristics of microphysical structure of the stratocumulus are very uneven. The variation of cloud particles characteristic parameter in lower layer of stratocumulus is larger than of stratocumulus upper layer. The water content and big cloud particle concentration increase with altitude. The difference of particle characteristics in similar altitude suggests that the situation of both formation and growth is variant in different horizontal cloud area at same altitude. The liquid water content is high in stratocumulus, and the maximum is 0.34 g·cm-3 in warm cloud region. There are thermal inversion layers near cloud bottom. The inversion layer near cloud bottom has strong intensity and impact on cloud microphysical structure, including more cloud drop and higher liquid water content near both top and bottom of inversion layer, but it has less obvious influence on larger water drop. The warm rain process is general in stratocumulus, and it is most active in the middle of stratocumulus. The ice phase particles near stratocumulus top enhanced the warm rain process and contribute to rainfall.

Cite this article

DANG Juan , LIU Weiguo , TAO Yue . Analysis of Cloud Microphysical Characteristics on a Precipitation Stratocumulus[J]. Plateau Meteorology, 2016 , 35(6) : 1639 -1649 . DOI: 10.7522/j.issn.1000-0534.2015.00104

References

[1]Hobbs P V, Radke L R. 1975. The nature of winter clouds and precipitation in Cascade Mountains and their modification by artificial seeding Part II:Techniques for the physical evaluation of seeding[J]. J Appl Meteor, 14(5):805-818.
[2]Houze R A, Hobbs P V, Herzegh P H, et al. 1979. Size distributions of precipitation particles in frontal clouds[J]. J Atmos Sci, 36(1):156-162.
[3]Lo K K, Passarelli R E. 1982. The growth of snow in winter storms:An airborne observational study[J]. J Atmos Sci, 39(4):697-706.
[4]Miles N L, Verlinde J, Clothiaux E E. 2000. Cloud droplet size distributions in low-level stratiform clouds[J]. J Atmos Sci, 57(2):295-311.
[5]Yum S S, Hudson J G. 2002. Maritime/continental microphysical contrasts in stratus[J]. Tellus, 54B:61-73.
[6]Cai Zhaoxin, Zhou Yuquan, Cai Miao. 2013. Analysis on comprehensive observation of artificial precipitation enhancement operation for a convective-stratiform mixed cloud[J]. Plateau Meteor, 32(5):1460-1469. DOI:10.7522/j. issn. 1000-0534.2012.00115.<br/>蔡兆鑫, 周毓荃, 蔡淼. 2013. 一次积层混合云系人工增雨作业的综合观测分析[J]. 高原气象, 32(5):1460-1469.
[7]Dang Juan, Wang Guanghe, Liu Weiguo. 2009. A case analysis on microphysical characteristics of summer stratiform cloud in Gansu Province[J]. Meteor Mon, 35(1):24-36.<br/>党娟, 王广河, 刘卫国. 2009. 甘肃省夏季层状云微物理特征个例分析[J]. 气象, 35(1):24-36.
[8]Chen Wenxuan, Wang Jun, Liu Wen, et al. 1999. Analysis of the microphysical precipitation mechanism for a cold vortex process[J]. Appl Meteor Sci, 10(2):190-198.<br/>陈文选, 王俊, 刘文, 等. 1999. 一次冷涡过程降水的微物理机制分析[J]. 应用气象学报, 10(2):190-198.
[9]Fang Wen. 2008. Effect of aerosol on cloud and precipitation[D]. Nanjing:Nanjing University of Information, 39-40.<br/>房文. 2008. 气溶胶对云和降水影响的研究[D]. 南京:南京信息工程大学, 39-40.
[10]Feng Qiujuan, Li Peiren, Jin Lijun, et al. 2012. Analysis on microphysical characteristic of stratocumulus precipitation in Shanxin province in Summer[J]. Plateau Meteor, 31(2):538-546.<br/>封秋娟, 李培仁, 晋立军, 等. 2012. 山西夏季层积云降水微物理特征分析[J]. 高原气象, 31(2):538-546.
[11]Li Lunge, De Ligeer. 2001. Analyses of Microphysical features for Spring precipitation cloud layers in east of Qinghai[J]. Plateau Meteor, 20(2):192-196.<br/>李仑格, 德力格尔. 2001. 高原东部春季降水云层的微物理特征分析[J]. 高原气象, 20(2): 192-196.
[12]Li Zhaorong, Li Rongqing, Li Baozi. 2003. Analyses on vertical microphysical characteristics of Autumn startiform cloud in Lanzhou region[J]. Plateau Meteor, 22(6):583-589.<br/>李照荣, 李荣庆, 李宝梓. 2003. 兰州地区秋季层状云垂直微物理特征分析[J]. 高原气象, 22(6):583-589.
[13]Liu Weiguo, Su Zhengjun, Wang Guanghe, et al. 2003. Development and application of new-generation airborne particle measuring system[J]. Appl Meteor Sci, 14(suppl):11-18.<br/>刘卫国, 苏正军, 王广河, 等. 2003. 新一代机载PMS粒子测量系统及应用[J]. 应用气象学报, 14(增刊):11-18.
[14]Niu Shengjie, Ma Tiehan, Guan Yuee, et al. 1992. Observation analysis of the microstructures of precipitation sheet clouds in Summer over Ningxia[J]. Plateau Meteor, 11(3):241-248.<br/>牛生杰, 马铁汉, 管月娥, 等. 1992. 宁夏夏季降水性层状云微结构观测分析[J]. 高原气象, 11(3):241-248.
[15]Qi Yanbin, Guo Xueliang, Jin Dezhen. 2007. An observational study of macro/microphysical sturctures of convective rainbands of a cold vortex over Northeast China[J]. Chinese J Atmos Sci, 31(4):621-634.<br/>齐彦斌, 郭学良, 金德镇. 2007. 一次东北冷涡中对流云带的宏微物理结构探测研究[J]. 大气科学, 31(4):621-634.
[16]Sheng Peixuan, Mao Jietai, Li Jianguo, et al. 2003. Atmospheric physics[M]. Beijing:Peking University Press, 345.<br/>盛裴轩, 毛节泰, 李建国, 等. 2003. 大气物理学[M]. 北京:北京大学出版社, 345.
[17]Su Zhengjun, Wang Guanghe, Liu Weiguo, et al. 2003. Micro-structure analysis of Spring precipitable clouds in Qinghai province[J]. Appl Meteor Sci, 14(suppl):36-40.<br/>苏正军, 王广河, 刘卫国, 等. 2003. 青海省春季降水云的微物理特征分析[J]. 应用气象学报, 14(增刊):36-40.
[18]Sun Yuwen, Li Baodong, Liu Wei, et al. 2015. Study on physical structure of Hebei stratiform clouds in Autumn and its seedability condition[J]. Plateau Meteor, 34(1):237-250. DOI:10.7522/j. issn. 1000-0534.2013.00172.<br/>孙玉稳, 李宝东, 刘伟, 等. 2015. 河北秋季层状云物理结构及适播性分析[J]. 高原气象, 34(1):237-250.
[19]Wang Guanghe, You Laiguang. 1989. The microphysical structures and precipitation characteristics of the cloud zone over a wintertime cold front and stratocumulus under ist in Urumqi[J]. Meteor Mon, 15(3):15-19.<br/>王广河, 游来光. 1989. 乌鲁木齐冬季冷锋云带和锋下层积云的降水微物理结构特征及其降雪特征[J]. 气象, 15(3):15-19.
[20]Wang Lijun, Yin Yan, Li Lunge, et al. 2013. Analyses on typical autumn multi-layer strtiform clouds over the Sanjiangyuan national nature reserve with airborne observations[J]. Chinese J Atmos Sci, 37(5):1038-1058.<br/>王黎俊, 银燕, 李仑格, 等. 2013. 三江源地区秋季典型多层层状云系的飞机观测分析[J]. 大气科学, 37(5):1038-1058.
[21]Yang Wenxia, Zhou Yuquan, Sun Jing, et al. 2014. Observational studies of distribution characteristics of supercooled cloud water during a westerly through process[J]. Acta Meteor Sinica, 72(3):583-595.<br/>杨文霞, 周毓荃, 孙晶, 等. 2014. 一次西风槽过程过冷云水分布特征观测研究[J]. 气象学报, 72(3):583-595.
[22]You Laiguang. 1994. The study of cloud physical processes and artificial precipitation conditions by Particle Measuring System. Ref:You Jingyan, Duan Ying, You Laiguang. Cloud physics and artificial precipitation technology research[M]. Beijing:China Meteorological Press, 236-249.<br/>游来光. 1994. 利用粒子测量系统研究云物理过程和人工增雨条件. 游景炎, 段英, 游来光主编. 云降水物理和人工增雨技术研究[M]. 北京:气象出版社, 236-249.
[23]You Laiguang, Ma Peimin, Hu Zhijin. 2002. Northern stratiform cloud artificial rainfall experiments[J]. Meteor Sci and Tech, 30(suppl):19-56.<br/>游来光, 马培民, 胡志晋. 2002. 北方层状云人工降水试验研究[J]. 气象科技, 30(增刊):19-56.
[24]Zhang Dianguo, Guo Xueliang, Fu Danhong, et al. 2007. Aircraft observation on cloud microphysics in Beijing and its surrounding regions during August-September 2003[J]. Chinese J Atmos Sci, 31(4):596-610.<br/>张佃国, 郭学良, 付丹红, 等. 2007.2003年8~9月北京及周边地区云系微物理飞机探测研究[J]. 大气科学, 31(4):596-610.
[25]Zhang Dianguo, Fan Mingyue, Gong Dianli, et al. 2010. An analysis of microphysical characteristics on precipitation cumulus-strtus mixed clouds system[J]. Trans Atmos Sci, 33(4):496-503.<br/>张佃国, 樊明月, 龚佃利, 等. 2010. 一次降水性积层混合云系的微物理特征分析[J]. 大气科学学报, 33(4):496-503.
[26]Zhang Yu, Yin Yan, Shi Lixin, et al. 2012. Analysis of cloud microphysics structure over Hebei region during Autumn of 2007[J]. Plateau Meteor, 31(2):530-537.<br/>张瑜, 银燕, 石立新, 等. 2012.2007年秋季河北地区云微物理结构的飞机探测分析[J]. 高原气象, 31(2):530-537.
[27]Zhao Shixiong, De Ligeer, Tu Duobin. 2003. Numerical simulation of microphysical character of convective cloud precipitation in upper reach of Yellow River[J]. Plateau Meteor, 22(4):385-392.<br/>赵仕雄, 德力格尔, 涂多彬. 2003. 黄河上游降水云层对流特性及降水微结构机制研究[J]. 高原气象, 22(4):385-392.
Outlines

/