Study of Boundary Layer Parameterization Schemes' Applicability of WRF Model over Complex Underlying Surfaces in Southeast Tibet

  • LI Fei ,
  • ZOU Han ,
  • ZHOU Libo ,
  • MA Shupo ,
  • LI Peng ,
  • ZHU Jinhuan ,
  • ZHANG Yu
Expand
  • Department of Lower Atmosphere Observation Research, Institute of Atmospherics, Chinese Academy of Sciences, Beijing 100029, China;State Key Laboratory of Atmospheric boundary layer physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-11-30

  Online published: 2017-04-28

Abstract

Southeast Tibet is the typical representative of complex underlying surfaces of the Qinghai-Tibetan Plateau, the boundary layer processes above this region are quite complex, which greatly challenge modeling and numerical weather forecasting. Accurate simulation and forecasting of local atmospheric processes depend on the choice of boundary layer parameterization scheme. In this study, the Weather Research and Forecasting model (WRF) was employed to simulate the convective and stable atmospheric boundary layer processes of Nyingchi district, Tibet. By comparing with the results from comprehensive campaign "Observation on the surface-to-air Exchange Processes in the Southeast Himalayas" (OSEP) carried out during the summer of 2013, the 5 boundary layer schemes ACM2, Boulac, MYJ, QNSE, and YSU from WRF model were evaluated for their applicability above complicated underlying surface in southeast Tibet. The results indicate that Boulac scheme and MYJ scheme perform the best on convective and stable boundary layer vapor mixing ratio simulation, respectively. ACM2 scheme is a more preferable parameterization scheme on potential temperature and wind filed vertical structure simulation over the complex underlying surface of southeast Tibet. Convective boundary layer height simulated by all schemes are lower than observations; While QNSE simulation shows the minimum deviation. Simulation ability of the same boundary layer parameterization scheme on convective boundary layer and stable boundary layer are different. Boundary layer wind field in this region is greatly weakened by orography. Near surface wind speed simulated are weaker than observation, MYJ and QNSE parameterization scheme shows the best result.

Cite this article

LI Fei , ZOU Han , ZHOU Libo , MA Shupo , LI Peng , ZHU Jinhuan , ZHANG Yu . Study of Boundary Layer Parameterization Schemes' Applicability of WRF Model over Complex Underlying Surfaces in Southeast Tibet[J]. Plateau Meteorology, 2017 , 36(2) : 340 -357 . DOI: 10.7522/j.issn.1000-0534.2016.00041

References

[1]Bougeault P, Lacarrere P.1989.Parameterization of Orography-Induced Turbulence in a Mesobeta—Scale Model[J].Mon Wea Rev, 117(8): 1872-1890.
[2]Cheng W Y Y, Steenburgh W J.2005.Evaluation of surface sensible weather forecasts by the WRF and the Eta models over the western United States[J].Wea Forecasting, 20(5): 812-821.
[3]Chen X, Anel J A, Su Z, et al.2013.The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau[J].PloS One, 8(2): e56909.DOI: 10.1371/journal.pone.0056909.
[4]Dai C, Wang Q, Kalogiros J A, et al.2014.Determining boundary-layer height from aircraft measurements[J].Bound-Layer Meteor, 152(3): 1-26, DOI: 10.1007/s10546-014-9929-z.
[5]Hong S Y, Noh Y, Dudhia J.2006.A new vertical diffusion package with an explicit treatment of entrainment processes[J].Mon Wea Rev, 134(9): 2318-2341.DOI: 10.1175/MWR3199.1.
[6]Janjic Z I.1994.The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes[J].Mon Wea Rev, 122(5): 927-945.
[7]Jimenez P A, Dudhia J, Gonzalez-Rouco J F, et al.2013.An evaluation of WRF's ability to reproduce the surface wind over complex terrain based on typical circulation patterns[J].J Geophys Res: Atmos, 118(14): 7651-7669.
[8]Pleim J E.2007.A combined local and nonlocal closure model for the atmospheric boundary layer.Part Ⅰ: Model description and testing[J].J Climate Appl Meteor, 46(9): 1383-1395.
[9]Pryor S C, Barthelmie R J, Kjellstr?m E.2005.Potential climate change impact on wind energy resources in northern Europe: analyses using a regional climate model[J].Climate Dyn, 25(7-8): 815-835.
[10]Sukoriansky S, Galperin B, Perov V.2005.Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice[J].Bound-Layer Meteor, 117(2): 231-257.
[11]Seibert P, Beyrich F, Gryning S E, et al.2000.Review and intercomparison of operational methods for the determination of the mixing height[J].Atmospheric Environment, 34(7): 1001-1027.
[12]Seidel D J, Chi O A, Li K.2010.Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis[J].J Geophys Res, 115(D16): D16113.DOI: 10.1029/2009JD013680.
[13]Shimada S, Ohsawa T, Chikaoka S, et al.2011.Accuracy of the wind speed profile in the lower PBL as simulated by the WRF model[J].Sola, 7(1): 109–112.
[14]Wang A, Zeng X.2012.Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J].J Geophys Res, 117(D05): D05102.DOI: 10.1029/2011JD016553.
[15]Xie B, Fung J C H, Chan A, et al.2012.Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model[J].J Geophys Res, 117(D12): D12103.DOI: 10.1029/2011JD017080.
[16]Yang K, Koike T, Fujii H, et al.2004.The daytime evolution of the atmospheric boundary layer and convection over the Tibetan Plateau: observations and simulations[J].J Meteor Soc Japan, 82(6): 1777-1792.DOI: 10.2151/jmsj.82.1777.
[17]Zheng D H, Rogier V D V, Su Z B, et al.2014.Assessment of Roughness Length Schemes Implemented within the Noah Land Surface Model for High-Altitude Regions[J].J Hydrometeor, 15(3): 921–937.
[18]Zhou L, Zou H, Ma S, et al.2015.The observed impacts of South Asian summer monsoon the local atmosphere and the near surface turbulent heat exchange over the Southeast Tibet[J], J Geophys Res Atmos, 120(22): 11509-11518.DOI: 10.1002/2014JD022928.
[19]陈炯, 王建捷.2006.北京地区夏季边界层结构日变化的高分辨率模拟对比[J].应用气象学报, 17(4): 403-411.
[20]Chen Jun, Wang Jianjie.2006.Diurnal cycle of the boundary layer structure simulated by WRF in Beijing[J].Chinese J Appl Meteor, 17(4): 403-411.
[21]胡小明, 刘树华.2005.山丘地形的陆面过程及边界层特征的模拟[J].应用气象学报, 25(1): 13-23.
[22]Hu Xiaoming, Liu Shuhua.2005.Numerical simulation of land surface process and atmosphere boundary layer structure over small hill underlying surface[J].J Appl Meteor, 25(5): 13-23.
[23]黄文彦, 沈新勇, 王卫国, 等.2014.边界层参数化方案对边界层热力和动力结构特征影响的比较[J].地球物理学报, 57(5): 1399-1414.
[24]Huang Wenyan, Shen Xinyong, Wang Weiguo, et al.2014.Comparison of the thermal and dynamic structural characteristics in boundary layer with different boundary layer parameterizations[J].Chinese J Geophys, 57(5): 1399-1414.DOI: 10.6038/cjg20140505.
[25]何建军, 余晔, 刘娜, 等.2014.复杂地形区陆面资料对WRF模式模拟性能的影响[J].大气科学, 38(3): 484-498.
[26]He Jjianjun, Yu Ye, Liu Na, et al.2014.Impact of land surface information on WRF's performance in complex terrain area[J].Chinese J Atmos Sci, 38(3): 484-498.DOI: 10.3878/j.issn.1006-9895.2013.13186.
[27]蒋兴文, 李跃清, 王鑫, 等.2009.青藏高原东部及下游地区冬季边界层的观测分析[J].高原气象, 28(4): 754-762.
[28]Jiang Xingwn, Li Yueqing, Wang Xin, et al.2009.The observation ayalysis of atmospheric boundary layer structure in east part and downstream of Tibetan Plateau[J].Plateau Meteor, 28(4): 754-762.
[29]刘红燕, 苗曼倩.2001.青藏高原大气边界层特征初步分析[J].南京大学学报 (自然科学), 37(3): 348-357.
[30]Liu Hongyan, Miao Manqian.2001.Preliminary analysis on characteristics of boundary layer in Qinghai-Tibet Plateau[J].J Nanjing University (Natural Sci), 37(3): 348-357.
[31]吕雅琼, 马耀明, 李茂善, 等.2008.青藏高原纳木错湖区大气边界层结构分析[J].高原气象, 27(6): 1205-1210.
[32]Lu Yaqiong, Ma Yaoming, Li Maoshan, et al.2008.Study on characteristic of atmospheric boundary layer over Lake Namco Region, Tibetan Plateau[J].Plateau Meteor, 27(6): 1205-1210.
[33]李英, 胡志莉, 赵红梅.2012.青藏高原大气边界层结构特征研究综述[J].高原山地气象研究, 32(4): 91-96.
[34]Li Ying, Hu Zhili, Zhao Hongmei.2012.Overview on the characteristic of boundary layer structure in Tibetan Plateau[J].Plateau and Mountain Meteorology Research, 32(4): 91-96.
[35]刘罡, 蒋维楣, 罗云峰.2005.非均匀下垫面边界层研究现状与展望[J].地球科学进展, 20(2): 223-230.
[36]Liu Gang, Jiang Weimei, Luo Yunfeng.2005.Status quo and prospects of researches on atmospheric boundary layer over inhomogeneous underlying surface[J].Advances in Earth Science, 20(2): 223-230.
[37]石春娥, 李耀孙, 杨军, 等.2015.MM5和WRF对中国东部地区冬季边界层模拟效果比较[J].高原气象, 34(2): 389-400.
[38]Shi Chune, Li Yaosun, Yang Jun, et al.2015.Comparison of simulations on winter sounding profiles in PBL in East China between WRF and MM5[J].Plateau Meteor, 34(2): 389-400.DOI: 10.7552/j.issn.1000-0534.2013.00206.
[39]王颖, 张镭, 胡菊, 等.2010.WRF模式对山谷城市边界层模拟能力的检验及地面气象特征分析[J].高原气象, 29(6): 1937-1407.
[40]Wang Ying, Zhang Lei, Hu Ju, et al.2010.Verification of WRF simulation capacity on PBL characteristic and analysis of surface meteorological characteristic over complex terrain[J].Plateau Meteor, 29(6): 1937-1407.
[41]王腾蛟, 张镭, 胡向军, 等.2013.WRF模式对黄土高原丘陵地形条件下夏季边界层结构的数值模拟[J].高原气象, 32(5): 1261-1271.
[42]Wang Tengjiao, Zhang Lei, Hu Xiangjun, et al.2013.Numerical simulation of summer boundary layer structure over undulating topography of Loess Plateau simulated by WRF model[J].Plateau Meteor, 32(5): 1261-1271.DOI: 10.7522/j.issn.1000-0534.2012.00121.
[43]夏俊荣, 王普才, 闵敏.2011.新型多普勒测风激光雷达Windcube的风参数观测与验证[J].气候与环境研究, 16(6): 733-741.
[44]Xia Junrong, Wang Pucai, Min Min.2011.Observation and validation of wind parameters measured by Doppler wind lidar Windcube[J].Climatic and Environ Res, 16(6): 733-741.
[45]徐海, 邹捍, 李鹏, 等.2014.藏东南林芝机场低层风场垂直结构与变化特征[J].高原气象, 33(2): 355-360, DOI: 10.7522/j.issn.1000-0534.2013.00009.
[46]Xu Hai, Zou Han, Li Peng, et al.2014.Vertical structure and variation of wind field over Nyingchi airport southeast Tibet[J].Plateau Meteor, 33(2): 355-360.DOI: 10.7522/j.issn.1000-0534.2013.00009.
[47]徐祥德, 周明煜, 陈家宜.2001.青藏高原地一气过程动力, 热力结构综合物理图象[J].中国科学D辑, 31(5): 428-440.
[48]Xu Xiangde, Zhou Mingyu, Chen Jiayi.2001.Comprehensive physical image of dynamical and thermal dynamical structure of land-air process on the Tibetan Plateau[J].Science China Earth Sciences, 31(5): 428-440.
[49]徐祥德, 陶诗言, 王继志, 等.2002.青藏高原-季风水汽输送"大三角扇形"影响域特征与中国区域旱涝异常的关系[J].气象学报, 60(3): 257-266.
[50]Xu Xiangde, Tao Shiyan, Wang Jizhi, et al.2002.The relationship between water vapor transport features of Tibetan Plateau-monsoon "Large Triangle" affecting region and drought-flood abnormality of China[J].Acta Meteor Sinica, 60(3): 257-266.
[51]杨罡, 刘树华, 朱蓉, 等.2011.鄱阳湖地区大气边界层特征的数值模拟[J].地球物理学报, 54(4): 896-908.
[52]Yang Gang, Liu Shuhua, Zhu Rong, et al.2011.Numerical simulation of features of boundary-layer over Poyang Lake area[J].Chinese J Geophys, 54(4): 896-908.
[53]叶笃正, 高由禧.1979.青藏高原气象学[M].北京:科学出版社, 122-126.
[54]Ye Duzheng, Gao Youxi.1979.Tibetan Plateau Meteorology[M].Beijing: Science Press, 122-126.
[55]张碧辉, 刘树华, Liu He-ping, 等.2012.MYJ和YSU方案对WRF边界层气象要素模拟的影响[J].地球物理学报, 55(7): 2239-2248.
[56]Zhang Bihui, Liu Shuhua, Liu Heping, et al.2012.The effect of MYJ and YSU schemes on the simulation of boundary layer meteorological factors of WRF[J].Chinese J Geophys, 55(7): 2239-2248.DOI: 10.6038/j.issn.0001-5733.2012.07.010.
[57]张振洲, 蔡旭晖, 宋宇, 等.2013.海南岛地区大气边界层高度的时空变化特征[J].北京大学学报 (自然科学版), 49(5): 783-790.
[58]Zhang Zhenzhou, Cai Xxuhui, Song Yu, et al.2013.Temporal and spatial variation of atmospheric boundary layer height over Hainan Island and its adjacent sea areas[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 49(5): 783-790.
[59]赵世强, 张镭, 王治厅, 等.2012.利用激光雷达结合数值模式估算兰州远郊榆中地区夏季边界层高度[J].气候与环境研究, 17(5): 523-531.
[60]Zhao Shiqiang, Zhang Lei, Wang Zhiting, et al.2012.Boundary layer height estimate in summer over the Lanzhou suburb in the Yuzhong Area using lidar measurement and numerical model[J].Climatic and Environ Res, 17(5): 523-531.
[61]周明煜, 徐祥德, 卞林根, 等.2000.青藏高原大气边界层观测分析与动力学研究[M].北京:气象出版社.
[62]Zhou Mingyu, Xu Xiangde, Bian Lingen, et al.2000.Boundary layer observation analysis and research on dynamics of the Tibetan Plateau[M].Beijing: China Meteorological Press.
[63]卓嘎, 徐祥德, 陈联寿.2002.青藏高原边界层高度特征对大气环流动力学效应的数值试验[J].应用气象学报, 13(2): 163-169.
[64]Zhuo Ga, Xu Xiangde, Chen Lianshou.2002.Dynamical effect of boundary layer characteristics of Tibetan Plateau on general circulation[J].J Appl Meteor, 13(2): 163-169.
Outlines

/