Impacts of Microphysics and PBL Physics Parameterization on a Convective Precipitation over the Qinghai-Tibetan Plateau

  • LUAN Lan ,
  • MENG Xianhong ,
  • Lü Shihua ,
  • LI Zhaoguo
Expand
  • Key Laboratory for Land Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;College of Amospheric Sciences, Chendu University of Informtion Technology Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu 610225, China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2016-04-19

  Online published: 2017-04-28

Abstract

A convective precipitation occurred in Nagqu over the Qinghai-Tibetan Plateau was simulated using WRF model with different microphysics and PBL physics options in this work. The simulations and observations were compared to understand the influence of the different microphysics and PBL physics options. The results show that WRF model can reproduce the precipitation, but a deviation of precipitation center exists between the simulation and the observation, which leads to discrepancies between them. Comparing the simulations with TRMM, a remote sensing product, the time when convention occurred is close. In addition, differences were produced by using different initial and boundary inputs. Overall, the simulations using ERA-Interim datasets as inputs produced better precipitation pattern than that using the NCEP FNL datasets, comparing with the TRMM datasets. By analyzing the differences of water vapor flux, water vapor flux divergence and vertical wind between the simulations with different microphysics and PBL physics options, it is found that the simulation of precipitation is more sensitive to the PBL physics than the microphysics options.

Cite this article

LUAN Lan , MENG Xianhong , Lü Shihua , LI Zhaoguo . Impacts of Microphysics and PBL Physics Parameterization on a Convective Precipitation over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2017 , 36(2) : 283 -293 . DOI: 10.7522/j.issn.1000-0534.2016.00086

References

[1]Bougeault P, Lacarrere P.1989.Parameterization of orography-induced turbulence in a mesobeta-scale model[J].Mon Wea Rev, 117(8): 1872-1890.
[2]Dee D P, Uppala S M, Simmons A J, et al.2011.The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J].Quart J Roy Meteor Soc.137(656): 553-597.
[3]Duan A, Xiao Z.2015.Does the climate warming hiatus exist over the Tibetan Plateau?[J].Scientific Reports, (5): 13711.DOI: 10.1038/srep13711.
[4]Gao X, Shi Y, Song R, et al.2008.Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM[J].MeteorAtmos Phys.100(1): 73-86.DOI: 10.1007/s00703-008-0296-5.
[5]Gao Y, Xu J.2015.Evaluation of WRFmesoscale climate simulations over the Tibetan Plateau during 1979-2011[J].J Climate, 28(7): 2823-2841.
[6]Grenier H, Bretherton C S.2001.A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers[J].Mon Wea Rev.129(3): 357-377.
[7]Hong S Y, Lim J O J.2006.The WRF Single-Moment 6-Class Microphysics Scheme (WSM6)[J].J Korean MeteorSoc, 42(2): 129-151.
[8]Hong S Y, Noh Y, Dudhia J.2006.A new vertical diffusion package with an explicit treatment of entrainment processes[J].Mon Wea Rev, 134(9): 2318-2341.
[9]Janjic Z I.1994.The step-mountain Eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes[J].Mon Wea Rev, 122(5): 927-945.
[10]Kain J S.2004.The Kain-Fritsch convective parameterization: An update[J].J Appl Meteor, 43(1): 170-181.
[11]Lin Y L, Farley R D, Orville H D.1983.Bulk parameterization of the snow field in a cloud model[J].JAppl Meteor, 22(6): 1065-1092.
[12]Liu X, Chen B.2000.Climate warming in the Tibetan Plateau during recent decades[J].Int J Climatol, 20(14): 1729-1742.
[13]Qin Y, Chen Z, Shen Y, et al.2014.Evaluation of satellite rainfall estimates over the Chinese mainland[J].Remote Sens.6(11): 11649-11672.DOI: 10.3390/rs61111649.
[14]Skamarock W C, Klemp J B, Dudhia J, et al.2008.A Description of the Advanced Research WRF Version 3[R].NCAR Technical Note NCAR/TN–475+STR, 113.DOI: <a href="http://dx.doi.org/10.5065/D68S4MVH." target="_blank">10.5065/D68S4MVH.</a>
[15]Su F, Duan X, Chen D L, et al.2013.Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau[J].J Climate, 26(10): 3187-3208.
[16]Wu L, Zhai P.2012.Validation of daily precipitation from two high-resolution satellite precipitation datasets over the Tibetan Plateau and the regions to its east[J].J Meteor Res, 26(6): 735-745.DOI: 10.1007/s13351-012-0605-2.
[17]Yang J, Duan K.2016.Effects of initial drivers and land use on WRF modeling for near-surface fields and atmospheric boundary layer over the northeastern Tibetan Plateau[J].Adv Meteor, 2016(20): 1-16.DOI: 10.1155/2016/7849249.
[18]Zhou T, Li Z.2002.Simulation of the East Asian summer monsoon using a variable resolution atmospheric GCM[J].ClimateDyn, 19(2): 167-180.DOI: 10.1007/s00382-001-0214-8.
[19]Zhu J, Ma S, Zou H, et al.2014.Evaluation of reanalysis products with in situ GPS sounding observations in the eastern Himalayas[J].Atmos Ocean Sci Lett, 7(1): 17-22.DOI: 10.3878/j.issn.1674-2834.13.0050.
[20]冯松, 汤懋苍, 王冬梅.1998.青藏高原是我国气候变化启动区的新证据[J].科学通报, 43(6): 633-636.
[21]Feng Song, Tang Maocang, Wang Dongmei.1998.New evidence supports that the Tibetan Plateau is the trigger region of China[J].Chin Sci Bull, 43(6): 633-636.
[22]巩崇水, 段海霞, 李耀辉, 等.2015.RegCM4模式对中国过去30a气温和降水的模拟[J].干旱气象, 33(3): 379-394.
[23]Gong Chongshui, Duan Haixia, Li Yaohui, et al.2015.Simulation of temperature and precipitation in China in the last 30 years by using the RegCM4[J].Arid Meteor, 33(3): 379-394.DOI: 10.11755/j.issn.1006-7639(2015)-03-0379.
[24]郭凤霞, 张义军, 言穆弘.2007.青藏高原那曲地区雷暴云电荷结构特征数值模拟研究[J].大气科学, 31(1): 28-36.
[25]Guo Fengxia, Zhang Yijun, Yan Muhong.2007.A numerical study of the charge structure in thunderstorm in Nagqu area of the Qinghai-Xizang Plateau[J].Chinese J Atmos Sci, 31(1): 28-36.DOI: 10.3878/j.issn.1006-9895.2007.01.03.
[26]何由, 阳坤, 姚檀栋, 等.2012.基于WRF模式对青藏高原一次强降水的模拟[J].高原气象, 31(5): 1183-1191.
[27]He You, Yang Kun, Yao Tandong, et al.2012.Numerical simulation of a heavy precipitation in Qinghai-Xizang Plateau based on WRF model[J].Plateau Meteor, 31(5): 1183-1191.
[28]胡芩, 姜大膀, 范广洲.2014.CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J].大气科学, 38(5): 924-938.
[29]Hu Qin, Jiang Dabang, Fan Guangzhou.2014.Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau[J].Chinese J Atmos Sci, 38 (5): 924-938.DOI: 10.3878/j.issn.1006-9895.2013.13197.
[30]李瑞青, 吕世华, 韩博, 等.2012.青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J].高原气象.31(6): 1488-1502.
[31]Li Ruiqing, Lyu Shihua, Han Bo, et al.2012.Preliminary comparison and analyses of air temperature at 2m height between three reanalysis data-sets and observation in the east of Qinghai-Xiang Plateau[J].Plateau Meteor, 31(6): 1488-1502.
[32]李振朝, 韦志刚, 吕世华, 等.2013.CMIP5部分模式气温和降水模拟结果在北半球及青藏高原的检验[J].高原气象, 32(4): 921-928.
[33]Li Zhenchao, Wei Zhigang, Lyu Shihua, et al.2013.Verifications of surface air temperature and precipitation from CMIP5 model in northern hemisphere and Qinghai-Xizang Plateau[J].Plateau Meteor, 32(4): 921-928.DOI: 10.7522/j.issn.1000-0534.2012.00088.
[34]刘黎平, 钱永甫, 吴爱明.2000.区域模式和GCM对青藏高原和西北地区气候模拟结果的对比分析[J].高原气象, 19(3): 313-322.
[35]Liu Liping, Qian Yongfu, Wu Aimin.2000.Comparison of simulated results of regional climate in summer over Qinghai-Xizang Plateau and Northwest China[J].Plateau Meteor, 19(3): 313-322.
[36]马耀明, 胡泽勇, 田立德, 等.2014.青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J].地球科学进展, 29(2): 207-215.
[37]Ma Yaoming, Hu Zeyong, Tian Lide, et al.2014.Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia[J].Adv Earth Sci, 29(2): 207-215.DOI: 10.11867/j.issn.1001-8166.2014.02.0207.
[38]屈鹏, 杨梅学, 郭东林, 等.2009.RegCM3模式对青藏高原夏季气温和降水的模拟[J].高原气象, 28(4): 738-744.
[39]Qu Peng, Yang Meixue, Guo Donglin, et al.2009.Simulation of summer air temperature and precipitation over Tibetan Plateau with regional climate model (RegCM3)[J].Plateau Meteor, 28(4): 738-744.
[40]王腾蛟, 张镭, 胡向军, 等.2013.WRF模式对黄土高原丘陵地形条件下夏季边界层结构的数值模拟[J].高原气象, 32(5): 1261-1271.
[41]Wang Tengjiao, Zhang Lei, Hu Xiangjun, et al.2013.Numerical simulation of summer boundary layer structure over undulating topography of Loess Plateau simulated by WRF model[J].Plateau Meteor, 32(5): 1261-1271.DOI: 10.7522/j.issn.1000-0534.2012.00121.
[42]王子谦, 段安民, 吴国雄.2014.边界层参数化方案及海气耦合对WRF模拟东亚夏季风的影响[J].中国科学:地球科学, 44(3): 548-562.
[43]Wang Ziqian, Duan Aanmin, Wu Guoxiong.2014.Impacts of boundary layer parameterization schemes and air-sea coupling on WRF simulation of the East Asian summer monsoon[J].Sci China: Earth Sci, 44(3): 548-562.DOI: 10.1007/s11430-013-4801-4.
[44]吴遥, 李跃清, 蒋兴文, 等.2015.两种边界层参数化方案对WRF模拟青藏高原2013年夏季降水的影响[J].高原山地气象研究, 35(2): 7-16.
[45]Wu Yao, Li Yueqing, Jiang Xingwen, et al.2015.Influence of two planetary boundary layer parameterization schemes on summer rain in 2013 on Tibet Plateau by WRF model[J].Plateau Mountain Meteor Res, 35(2): 7-16.DOI: 10.3969/j.issn.1674-2184.2015.02.002.
[46]许建伟, 高艳红.2014.WRF模式对夏季黑河流域气温和降水的模拟及检验[J].高原气象, 33(4): 937-946.
[47]Xu Jianwei, Gao Yanhong.2014.Validation of summer surface air temperature and precipitation simulation over Heihe River Basin[J].Plateau Meteor, 33(4): 937-946.DOI: 10.7522/j.issn.1000-0534.2013.00149.
[48]荀学义, 胡泽勇, 孙俊, 等.2011.ECMWF和NCEP再分析资料在青藏高原高度场变化中的对比分析[J].冰川冻土, 33(1): 80-87.
[49]Xun Xueyi, Hu Zeyong, Sun Jun, et al.2011.A comparative analysis of height field variations over the Tibetan Plateau using ECMWF and NCEP reanalysis data[J].Journal of Glaciology and Geocryology, 33(1): 80-87.
[50]闫之辉, 邓莲堂.2007.WRF模式中的微物理过程及其预报对比试验[J].沙漠与绿洲气象, 1(6): 1-6.
[51]Yan Zhihui, Deng Liantang.2007.Description of microphysical processes in WRF model and its prediction experiment[J].Desert and Oasis Meteorology, 1(6): 1-6.DOI: 10.3969/j.issn.1002-0799.2007.06.001.
[52]张冬峰, 高学杰, 白虎志, 等.2005.RegCM3模式对青藏高原地区气候的模拟[J].高原气象, 24(5): 714-720.
[53]Zhang Dongfeng, Gao Xuejie, Bai Huzhi, et al.2005.Simulation of climate over Qinghai-Xizang Plateau utilizing RegCM3[J].Plateau Meteor, 4(5): 714-720.
[54]张强.2007.极端干旱荒漠地区大气热力边界层厚度研究[J].中国沙漠, 27(4): 614-620.
[55]Zhang Qiang.2007.Study on depth of atmospheric thermal boundary layer in extreme arid desert regions[J].Journal of Desert Research, 27(4): 614-620.DOI: 10.3321/j.issn: 1000-694X.2007.04.015.
[56]赵宗慈, 罗勇.1998.二十世纪九十年代区域气候模拟研究进展[J].气象学报, 56(2): 225-246.
[57]Zhao Zongci, Luo Yong.1998.Advance on investigations of regional climate modeling since 1990[J].J Meteor Res, 56(2): 225-246.DOI: 10.11676/qxxb1998.021.
[58]郑然, 李栋梁, 蒋元春.2015.全球变暖背景下青藏高原气温变化的新特征[J].高原气象, 34(6): 1531-1539.
[59]Zheng Ran, Li Dongliang, Jiang Yuanchun.2015.New characteristics of temperature change over Qinghai-Xizang Plateau on the background of global warming[J].Plateau Meteor, 34(6): 1531-1539.DOI: 10.7522/j.issn.1000-0534.2014.00123.
[60]朱士超, 银燕, 金莲姬.等, 2011.青藏高原一次强对流过程对水汽垂直输送的数值模拟[J].大气科学, 35(6): 1057-1068.
[61]Zhu Shichao, Yin Yan, Jin Lianji, et al.2011.A numerical study of the vertical transport of water vapor by intense convection over the Tibetan Plateau[J].Chinese J Atmos Sci, 35(6): 1057-1068.DOI: 10.3878/j.issn.1006-9895.011.06.06.
Outlines

/