Comparison of Different Stochastic Physics Perturbation Schemes on a Storm-Scale Ensemble Forecast in a Heavy Rain Event

  • CAI Yuanchen ,
  • MIN Jinzhong ,
  • ZHUANG Xiaoran
Expand
  • Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China

Received date: 2015-11-20

  Online published: 2017-04-28

Abstract

A weather forecast system is very sensitive to the model error. Particularly, the uncertainty in sub-grid parametrization process has the essential effect on the accuracy of weather forecast system. Due to small time scale, fast and strong nonlinear development of the storm-scale system, the traditional medium-range ensemble forecast method is obsolete. Stochastic Perturbed Parameterization Tendencies (SPPT) scheme, Stochastic Kinetic-Energy Backscatter (SKEB) scheme and mixed model perturbation (SKEB+SPPT) scheme are added to the storm-scale ensemble forecast system, in order to simulate a severe convection weather process in Anhui province on 31 May 2014.This paper evaluates the performance of ensemble forecast and analyses the characteristics of stochastic perturbation and kinetic energy evolvement. Results shows that the 60 km length scale and 3 h decorrelation time scale in SPPT are best in this case. The mixed model perturbation scheme increases (reduces) the spread and accuracy (the forecast error) of SPPT scheme only or SKEB scheme only, and decreases the mistaking and missing forecast of precipitation. The perturbation spatial distribution of the mixed model perturbation scheme is similar to that of the SPPT scheme at the beginning of forecast. As forecast time goes on, the perturbation spatial distribution is transformed and is similar to that of SKEB. The kinetic energy perturbation of the mixed model perturbation scheme is obviously bigger than that of SPPT only or SKEB only in all scales, indicating that the combination of the two stochastic perturbation schemes can efficiently complement the missing energy in different scales.

Cite this article

CAI Yuanchen , MIN Jinzhong , ZHUANG Xiaoran . Comparison of Different Stochastic Physics Perturbation Schemes on a Storm-Scale Ensemble Forecast in a Heavy Rain Event[J]. Plateau Meteorology, 2017 , 36(2) : 407 -423 . DOI: 10.7522/j.issn.1000-0534.2016.00024

References

[1]Berner J, Shutts G J, Leutbecher M, et al.2009.A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system[J].J Atmos Sci, 66(3): 603-626.
[2]Berner J, Ha S Y, Hacker J P, et al.2011.Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations[J].Mon Wea Rev, 139(6): 1972-1995.
[3]Bouttier F, Vié B, Nuissier O, et al.2012.Impact of stochastic physics in a convection-permitting ensemble[J].Mon Wea Rev, 140(11): 3706-3721.
[4]Bowler N E, Arribas A, Beare S E, et al.2009.The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system[J].Quart J Roy Meteor Soc, 135(640): 767-776.
[5]Buizza R, Milleer M, Palmer T N.1999.Stochastic representation of model uncertainties in the ECMWF ensemble prediction system[J].Quart J Roy Meteor Soc, 125(560): 2887-2908.
[6]Duda J D, Wang X, Kong F, et al.2016.Impact of a stochastic kinetic energy backscatter scheme on warm season convection-allowing ensemble forecasts[J].Mon Wea Rev, 144(5): 1887-1908.
[7]Epstein E S.1969.Stochastic Dynamic Prediction[J].Tellus A, 21(6): 739-759.
[8]Hamill T M.2001.Interpretation of rank histograms for verifying ensemble forecasts[J].Mon Wea Rev, 129(3): 550-560.
[9]Hersbach H.2000.Decomposition of the continuous ranked probability score for ensemble prediction systems[J].Wea Forecasting, 15(5): 559-570.
[10]Leith C E.1974.Theoretical skill of Monte Carlo forecasts[J].Mon Wea Rev, 102(6): 409-418.
[11]Palmer T N, Buizza R, Doblas-Reyes F, et al.2009.Stochastic parametrization and model uncertainty[C][WT《Times New Roman》]//ECMWF, Shinfield Park, Reading RG2-9AX, UK, ECMWF Research Department Technical Memorandum, 42.
[12]Shutts G.2005.A kinetic energy backscatter algorithm for use in ensemble prediction systems[J].Quart J Roy Meteor Soc, 131(612): 3079-3102.
[13]Toth Z, Kalnay E.1993.Ensemble forecasting at NMC: The generation of perturbations[J].Bull Amer Meteor Soc, 74(12): 2317-2330.
[14]Toth Z, Kalnay E.1997.Ensemble forecasting at NCEP and the breeding method[J].Mon Wea Rev, 125(12): 3297-3319.
[15]Vié B, Nuissier O, Ducrocq V.2011.Cloud-resolving ensemble simulations of mediterranean heavy precipitating events: Uncertainty on initial conditions and lateral boundary conditions[J].Mon Wea Rev, 139(2): 403-423.
[16]Walser A, Lüthi D, Sch?r C.2004.Predictability of precipitation in a cloud-resolving model[J].Mon Wea Rev, 132(2): 560-577.
[17]Wang Y, Bellus M, Geleyn J F, et al.2014.A new method for generating initial condition perturbations in a regional ensemble prediction system: Blending[J].Mon Wea Rev, 142(5): 2043-2059.
[18]高峰, 闵锦忠, 孔凡铀.2010.基于增长模繁殖法的风暴尺度集合预报试验[J].高原气象, 29(2): 429-436.
[19]Gao Feng, Min Jinzhong, Kong Fanyou.2010.Experiment of the storm-scale ensemble forecast based on breeding of growing mode[J].Plateau Meteor, 29(2): 429-436.
[20]谭宁, 陈静, 田华.2013.两种模式随机扰动方案比较及扰动传播分析[J].气象, 39(5): 543-555.
[21]Tan Ning, Chen Jing, Tian Hua.2013.Comparison between two global model stochastic perturbation schemes and analysis of perturbation propagation[J].Meteor Mon, 39(5): 543-555.
[22]王晨稀, 姚建群.2008.对一次局地短时降水的集合预报研究[J].高原气象, 27(6): 1229-1239.
[23]Wang Chenxi, Yao Jianqun.2008.Ensemble forecasting of a local short-lived severe precipitation[J].Plateau Meteor, 27(6): 1229-1238.
[24]张曼, 闵锦忠, 戚友存, 等.2014.基于KF-ETA积云对流参数化方案集合预报试验[J].高原气象, 33(5): 1323-1331.
[25]Zhang Man, Min Jinzhong, Qi Youcun, et al.2014.Ensemble experiments research based on mass-fluxed cumulus convective parameterization of KF-ETA[J].Plateau Meteor, 33(5): 1323-1331.DOI: 10.7752.j.issn.1000-0534.2013.00086.
[26]庄潇然, 闵锦忠, 蔡沅辰, 等.2016.不同大尺度强迫条件下考虑初始场与侧边界条件不确定性的对流尺度集合预报试验[J].气象学报, 74(2): 244-258.
[27]Zhuang Xiaoran, Min Jinzhong, Cai Yuanchen, et al.2016.Accounting for initial and lateral boundary condition uncertainties under different synoptic-scale forcing in convection-allowing ensemble prediction[J].Acta Meteor Sinica, 74(2): 244-258.
Outlines

/