Estimation of the Heat Transfer Coefficient over Inhomogeneous Underlying Surface on the Qinghai-Tibetan Plateau

  • GAO Shiyang ,
  • ZHANG Jie ,
  • LUO Qi
Expand
  • Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China;Shanghai Marine Meteorological Center, Shanghai 201300, China

Received date: 2016-03-17

  Online published: 2017-06-28

Abstract

Combined with wind speed and temperature reanalysis data from ERA-Interim by ECMWF, the land surface observations data and a variety of satellite remote sensing data during 2000-2014, based on the profile-flux method, this paper aims to get the heat transfer coefficient (CH) that is applicable to Qinghai-Tibetan Plateau, by improving the accuracy of aerodynamic roughness and additional damping of heat transfer (kB-1).Enhanced Vegetation Index and vegetation height was added to the original profile formula to estimate roughness, which could reflect the effects of vegetation coverage and types on the change of roughness.The differences between ground and air temperature was used to revise the estimation method of kB-1 and get results closer to the actual value.Finally, based on the optimization of above parameters, the heat transfer coefficient over the Qinghai-Tibetan Plateau in neutral atmospheric stratification is calculated, and its time-space distribution characteristics are analyzed.Eddy correlation data from JICA experiment and gradient observation data from GAME-Tibet experiment in 2008 were used to test the estimates.The results show that the improved computational scheme can reflect the inhomogeneous features of topography and vegetation over Qinghai-Tibetan Plateau; Time-space distribution characteristics of roughness and other related parameters are closely related with vegetation height and density and thermal conditions of underlying surface; Heat transfer coefficient is higher in the south than in the north, it is higher in the east than in the west, and it in summer maximum and winter minimum; The values in different eco-geographical regions have significant difference, it is higher in regions with high vegetation and large differences between ground and air temperature.

Cite this article

GAO Shiyang , ZHANG Jie , LUO Qi . Estimation of the Heat Transfer Coefficient over Inhomogeneous Underlying Surface on the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2017 , 36(3) : 596 -609 . DOI: 10.7522/j.issn.1000-0534.2016.00060

References

[1]Brutsaert W.1982.Evaporation into the Atmosphere[M].Dordrecht:D.Reidel Publishing Company, 352.
[2]Choudhury B J, Monteith J L.1988.A four-layer model for the heat budget of homogeneous land surfaces[J].Quart J Roy Meteor Soc, 114(480):373-398.
[3]Kanda M.2007.Roughness lengths for momentum and heat derived from outdoor urban scale models[J].J Appl Meteor Climatol, 46(7):1067-1079.
[4]Kondo J, Kawanaka A.1986.Numerical study on the bulk heat transfer coefficient for a variety of vegetation types and densities[J].Bound-Layer Meteor, 37(3):285-296.
[5]Kustas W P, Choudhury B J, Moran M S, et al.1989.Determination of sensible heat flux over sparse canopy using thermal infrared data[J].Agricultural and Forest Meteorology, 44(89):197-216.
[6]Leeuwen W J D V, Huete A R, Laing T W.1999.MODIS Vegetation Index Compositing Approach:A Prototype with AVHRR Data[J].Remote Sens Environ, 69(99):264-280.
[7]Massman W J.1997.An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure[J].Bound-Layer Meteor, 83(3):407-421.
[8]Massman W J.1999.A model study of kBH-1 for vegetated surfaces using 'localized near-field' Lagrangian theory[J].J Hydrology, 223(1):27-43.
[9]Owen P R, Thomson W R.1963.Heat transfer across rough surfaces[J].Journal of Fluid Mechanics, 15(3):321-334.
[10]Sheppard P A.1958.Transfer across the earth's surface and through the air above[J].Quart J Roy Meteor Soc, 84(361):205-224.
[11]Su Z, Schmugge T, Kustas W P, et al.2001.An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere[J].J Appl Meteor, 40(11):1933-1951.
[12]Yang K, Koike T, Ishikawa H, et al.2008.Turbulent flux transfer over bare-soil surfaces:Characteristics and parameterization[J].J Appl Meteor Climatol, 47(1):276-290.
[13]Zeng X, Dickinson R E.1998.Effect of Surface Sublayer on Surface Skin Temperature and Fluxes[J].J Climate, 11(4):537-550.
[14]Zhang J, Gao S, Chen H, et al.2015.Retrieval of the land surface-air temperature difference from high spatial resolution satellite observations over complex surfaces in the Tibetan Plateau[J].J Geophys Res Atmos, 120(16):8065-8079.
[15]Cai Wenyue, Xu Xiangde, Sun Jihua.2012.An investigation into the surface energy balance on the southeast edge of the Tibetan Plateau and the cloud's impact[J].Acta Meteor Sinica, 70(4):837-846.<br/>蔡雯悦, 徐祥德, 孙绩华.2012.青藏高原东南部云状况与地表能量收支结构[J].气象学报, 70(4):837-846.
[16]Duan Anming, Liu Yimin, Wu Guoxiong.2003.Abnormal thermal conditions o1 Tibetan Plateau from April to June and its relationship with summer precipitation and atmospheric circulation in East Asia[J].Science China:Series D, 33 (10):997-1004.<br/>段安民, 刘屹岷, 吴国雄.2003.4-6月青藏高原热状况与盛夏东亚降水和大气环流的异常[J].中国科学:D辑, 33(10):997-1004.
[17]Feng Jianwu, Liu Huizhi, Wang Lei, et al.2012.Seasonal and inter-annual variation of surface roughness length and bulk transfer coefficients in a semiarid area[J].Science China:Series D, 42(1):24-33.<br/>冯健武, 刘辉志, 王雷, 等.2012.半干旱区不同下垫面地表粗糙度和湍流通量整体输送系数变化特征[J].中国科学:D辑, 42(1):24-33.
[18]Li Dongliang, Wei Li, Li Weijing, et al.2003.The Tibetan Plateau surface sensible heat abnormal effects on Northern Hemisphere atmospheric circulation and China climate[J].Climatic Environ Res, 18(11):60-70.<br/>李栋梁, 魏丽, 李维京, 等.2003.青藏高原地面感热对北半球大气环流和中国气候异常的影响[J].气候与环境研究, 18(11):60-70.
[19]Li Guoping, Duan Tingyang, Gong Yuanfa.2000.The bulk transfer coefficients and surface fluxes in the western Tibetan Plateau[J].Chinese Sci Bull, 45(8):865-869.<br/>李国平, 段廷扬, 巩远发.2000.青藏高原西部地区的总体输送系数和地面通量[J].科学通报, 45(8):865-869.
[20]Li Guoping, Zhao Bangjie, Lu Jinghua.2002.Characteristics of bulk transfer coefficents over Tibetan Plateau[J].Acta Meteor Sinica, 60(1):60-67.<br/>李国平, 赵邦杰, 卢敬华.2002.青藏高原总体输送系数的特征[J].气象学报, 60(1):60-67.
[21]Li Wenmei, Qin Zhihao, Li Wenjuan, et al.2010.Comparison and analysis of MODIS NDVI and MODIS EVI[J].Remote Sensing Information, 6(6):73-78.<br/>李文梅, 覃志豪, 李文娟, 等.2010.MODIS NDVI与MODIS EVI的比较分析[J].遥感信息, 6(6):73-78.
[22]Ma Weiqiang, Ma Yaoming, Hu Zeyong, et al.2004.Analysis on surface radiation budget in Northern Tibetan Plateau[J].Plateau Meteor, 23(3):348-352.<br/>马伟强, 马耀明, 胡泽勇, 等.2004.藏北高原地面辐射收支的初步分析[J].高原气象, 23(3):348-352.
[23]Ma Yaoming, Yao Tandong, Wang Jiemin, et al.2006.The study on the land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau[J].Adv Earth Sci, 21(12):1215-1223.<br/>马耀明, 姚檀栋, 王介民, 等.2006.青藏高原复杂地表能量通量研究[J].地球科学进展, 21(12):1215-1223.
[24]Qian Zeyu, Hu Zeyong, Du Ping, et al.2005.Energy transfer of near surface layer and micrometeorology characteristics in Bailuhe Area of Qinghai-Xizang Plateau[J].Plateau Meteor, 24(1):43-48.<br/>钱泽雨, 胡泽勇, 杜萍, 等.2005.青藏高原北麓河地区近地层能量输送与微气象特征[J].高原气象, 24(1):43-48.
[25]Wang Hui, Li Dongliang, Hu Zeyong, et al.2008.A review of the study of the bulk transfer coefficients over the land[J].Adv Earth Sci, 23 (12):1249-1259.<br/>王慧, 李栋梁, 胡泽勇, 等.2008.陆面上总体输送系数研究进展[J].地球科学进展, 23(12):1249-1259.
[26]Wang Hui, Li Dongliang.2010.Estimation of the surface thermal transfer coefficients over the arid region of northwest china with the aid of satellite remote sensing and field observations[J].Chinese J Atmos Sci, 34(5):1026-1034.<br/>王慧, 李栋梁.2010.卫星遥感结合地面观测资料对中国西北干旱区地表热力输送系数的估算[J].大气科学, 34(5):1026-1034.
[27]Wu Zhengyi.1995.Chinese Vegetation[M].Beijing:Science Press.<br/>吴征镒.1995.中国植被[M].北京:科学出版社.
[28]Yang Kun, Guo Xiaofeng, Wu Bingyi.2010.Recent trends in surface sensible heat flux on the Tibetan Plateau[J].Science China:Earth Sciences, 40(7):923-932.<br/>阳坤, 郭晓峰, 武炳义.2010.青藏高原地表感热通量的近期变化趋势[J].中国科学:地球科学, 40(7):923-932.
[29]Yang Yaoxian, Li Maoshan, Hu Zeyong, et al.2014.Influence of surface roughness on surface-air fluxes in alpine meadow over the Northern Qinghai-Xizang Plateau[J].Plateau Meteor, 33(3):626-636.DOI:10.7522/j.issn.1000-0534.2013.00199.<br/>杨耀先, 李茂善, 胡泽勇, 等.2014.藏北高原高寒草甸地表粗糙度对地气通量的影响[J].高原气象, 33(3):626-636.
[30]Yue Ping, Zhang Qiang, Li Yaohui, et al.2013.Bulk transfer coefficients of momentum and sensible heat over semiarid grassland surface and their parameterization scheme[J].Acta Physica Sinica, 62(9):519-527.<br/>岳平, 张强, 李耀辉, 等.2013.半干旱草原下垫面动量和感热总体输送系数参数化关系研究[J].物理学报, 62(9):519-527.
[31]Zhang Geli, Ouyang Hua, Zhang Xianzhou, et al.2010.Vegetation change and its responses to climatic variation based on eco-geographical regions of Tibetan Plateau[J].Geographical Research, 29(11):2004-2016.<br/>张戈丽, 欧阳华, 张宪洲, 等.2010.基于生态地理分区的青藏高原植被覆被变化及其对气候变化的响应[J].地理研究, 29(11):2004-2016.
[32]Zhang Jie, Huang Jianping, Zhang Qiang.2010.Retrieval of aerodynamic roughness length character over sparse vegetation region[J].Acta Ecologica Sinica, 30(11):2819-2827.<br/>张杰, 黄建平, 张强.2010.稀疏植被区空气动力学粗糙度特征及遥感反演[J].生态学报, 30(11):2819-2827.
[33]Zhang Qiang, Zeng Jian, Yao Tong.2012.Interaction of aerodynamic roughness length and windflow conditions and its parameterization over vegetation surface[J].Chinese Sci Bull, 8(8):647-655.<br/>张强, 曾剑, 姚桐.2012.植被下垫面近地层大气动力状态与动力学粗糙度长度的相互作用及其参数化关系[J].科学通报, 8(8):647-655.
[34]Zhao Ming.2006.Atmospheric boundary layer dynamics[M].Beijing:Higher Education Press, 40-47.<br/>赵鸣.2006.大气边界层动力学[M].北京:高等教育出版社, 40-47.
[35]Zhou Mingyu, Xu Xiangde, Bian Lingen, et al.2000.Observational Analysis and Dynamic Study of Atmospheric Boundary Layer on Tibetan Plateau[M].Beijing:China Meteorological Press, 52-56.<br/>周明煜, 徐祥德, 卞林根, 等.2000.青藏高原大气边界层观测分析与动力学研究[M].北京:气象出版社, 52-56.
Outlines

/