Research on the Application of WRF-Lake Modeling at Nam Co Lake on the Qinghai-Tibetan Plateau

  • FANG Nan ,
  • YANG Kun ,
  • LAZHU ,
  • CHEN Yingying ,
  • WANG Junbo ,
  • ZHU Liping
Expand
  • Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2016-01-18

  Online published: 2017-06-28

Abstract

WRF is one of the most widely used regional weather forecast models.In order to better simulate the role of land surface with water bodies in the atmosphere, WRF has been coupled with a one-dimensional lake model in the recent version.This study explores the applicability of this lake model in the Qinghai-Tibetan Plateau region.Using high spatial and temporal resolution meteorological data as forcing, the lake model is applied to simulating water temperature and surface energy budget of Nam Co Lake, one of the biggest Tibetan lakes.The simulation results are evaluated against lake temperature observation data and MODIS data.The results show that WRF lake model is not applicable to this deep lake, due to too weak vertical mixing in the model.The weak vertical mixing in the model makes a large amount of energy stored in the shallow layer of the lake, and leads to error in the simulated lake temperature and surface energy balance.Through enhancing the internal heat transfer capacity in the lake model, the model's performance is much improved in simulating both the lake temperature and lake surface energy balance during nonfreezing period.

Cite this article

FANG Nan , YANG Kun , LAZHU , CHEN Yingying , WANG Junbo , ZHU Liping . Research on the Application of WRF-Lake Modeling at Nam Co Lake on the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2017 , 36(3) : 610 -618 . DOI: 10.7522/j.issn.1000-0534.2016.00038

References

[1]Chen Y, Yang K, He J, et al.2011.Improving land surface temperature modeling for dry land ofChina[J].J Geophys Res, 116(D20):D20104.DOI:10.1029/2011JD015921.
[2]Crosman E T, Horel J D.2009.MODIS-derived surface temperature of the Great Salt Lake[J].Remote Sens Environ, 113(1):73-81.
[3]Donlon C, Minnett P, Gentemann C, et al.2002.Toward improved validation of satellite sea surface skin temperature measurements for climate research[J].J Climate, 15:353-369.
[4]Dutra E, Stepanenko V M, Balsamo G, et al.2010.An offline study of the impact of lakes on the performance of the ECMWF surface scheme[J].Boreal Environ Res, 15:100-112.
[5]Fang X, Stefan H G.1996.Long-term lake water temperature and ice cover simulations measurements[J].Cold Reg Sci Technol, 24:289-304.
[6]Gu H, Jin J, Wu Y, et al.2015.Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model[J].Climatic Change, 129(3-4):471-483.
[7]Guo D, Wang H.2013.Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010[J].J Geophys Res Atmos, 118:5216-5230.
[8]Hostetler S W, Giorgi F.1992.Use of a regional atmospheric model to simulate lake-atmosphere feedbacks associated with Pleistocene Lakes Lahontan and Bonneville[J].Climate Dyn, 7:39-44.
[9]Hostetler S W, Bates G T, Giorgi F.1993.Interactive coupling of a lake thermal model with a regional climate model[J].J Geophys Res, 98:5045.
[10]Lazhu, Yang K, Lei Y, et al.2016.Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau[J].J Geophys Res:Atmospheres, 121(13):7578-7591
[11]Laird N F, Desrochers J, Payer M.2009.Climatology of lake-effect precipitation events over Lake Champlain[J].J Appl Meteorol Climatol, 48(2):232-250.
[12]Lei Y, Yao T, Bird B W, et al.2013.Coherent lake growth on the central Tibetan Plateau since the 1970s:Characterization and attribution[J].J Hydrol, 483:61-67.
[13]Li M, Ma Y M, Hu Z, et al.2009.Snow distribution over the Namco lake area of the Tibetan Plateau[J].Hydrol Earth Syst Sci, 13:2023-2030.
[14]Liu H Z, Feng J W, Sun J H, et al.2015.Eddy covariance measurements of water vapor and CO<sub>2</sub> fluxes above the Erhai Lake[J].Science China Earth Science, 3:317-328.
[15]Liu J G, Xie Z H.2013.Improving simulation of soil moisture in China using a multiple meteorological forcing ensemble approach[J].Hydrology and Earth System Sciences, 17(9):3355-3369.
[16]Miles N L, Verlinde J.2005.Observations of Transient Linear Organization and Nonlinear Scale Interactions in Lake-Effect Clouds.Part Ⅰ:Transient Linear Organization[J].Mon Wea Rev, 133:667-691.
[17]Mironov D, Heise E, Kourzeneva E, et al.2010.Implementation of the lake parameterisation saheme FLake into the numerical weather prediction model COSMO[J].Boreal environment research, 15(2):218-230.
[18]Reinart A, Reinhold M.2008.Mapping surface temperature in large lakes with MODIS data[J].Remote Sens Environ, 112:603-611.
[19]Robinson I, N Wells, Charnock H.1984.The sea surface thermal boundary layer and its relevance to the measurement of sea surface temperature by airborne and spaceborne radiometers[J].Int J Remote Sens, 5:19-45.
[20]Rouse W R, Blanken P D, Bussières N, et al.2008.An Investigation of the Thermal and Energy Balance Regimes of Great Slave and Great Bear Lakes[J].J Hydrometeorol, 9:1318-1333.
[21]Savtchenko A, Ouzounov D, Ahmad S, et al.2004.Terra and Aqua MODIS products available from NASA GES DAAC[J].Adv Space Res, 34:710-714.
[22]Schwartz M D, Karl T R.1990.Spring Phenology:Nature's Experiment to Detect the Effect of "Green-Up" on Surface Maximum Temperatures[J].Mon Weather Rev, 118(4):883-890.
[23]Segal M, Arritt R W.1992.Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients[J].Bull Amer Meteor Soc, 73(10):1593-1604.
[24]Stepanenko V M, Goyette S, Martynov A, et al.2010.First steps of a Lake Model intercomparison project:LakeMIP[J].Boreal Environ Res, 15(2):191-202.
[25]Subin Z M, Riley W J, Mironov D.2012.An improved lake model for climate simulations:model structure, evaluation, and sensitivity analyses in CESM1[J].Journal of Advances in Modeling Earth Systems, 4:1-27.
[26]Wan Z, Zhang Y, Zhang Q, et al.2004.Quality assessment and validation of the MODIS global land surface temperature[J].Int J Remote Sens, 25:261-274.
[27]Wen L J, Nagahatla N, Zhao L, et al.2015.Impacts of salinity parameterizations on temperature simulation over and in a hypersaline lake[J].Chinese Journal of Oceanology and Limnology, 3:790-801.
[28]Xiao F, Ling F, Du Y, et al.2013.Evaluation of spatial-temporal dynamics in surface water temperature of Qinghai Lake from 2001 to 2010 by using MODIS data[J].J Arid Land, 5:452-464.
[29]Zhang G, Yao T, Xie H, et al.2014.Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data[J].J Geophys Res Atmos, 119:8552-8567.
[30]Zhou S, Kang S, Chen F, et al.2013.Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau[J].J Hydrol, 491:89-99.
[31]Chen Wanlong, Sun Weiguo, Zhou Jingnan, et al.1995.A numerical simulation on lake-land breeze of Qinghai Lake[J].Lake Sci, 7(4):289-296.<br/>陈万隆, 孙卫国, 周竞南, 等.1995.青海湖湖陆风的数值研究[J].湖泊科学, 7(4):289-296.
[32]He Jie.2010.Development of a surface meteorological dataset of China with high temporal and spatial resolution[D].Beijing:University of Chinese Academy of Sciences, 1-77.<br/>何杰. 2010. 中国区域高时空分辨率气象要素数据集的建立[D]. 北京: 中国科学院大学, 1-77.
[33]Li Maoshan, Yang Yaoxian, Ma yaoming, et al.2012.Analyses on turbulence data control dan distribution of surface energy flux in Namco area of Tibetan Plateau[J].Plateau Meteor, 31(4):875-884.<br/>李茂善, 杨耀先, 马耀明, 等.2012.纳木错(湖)地区湍流数据质量控制和湍流通量变化特征[J].高原气象, 31(4):875-884.
[34]Li Zhaoguo, Lu Shihua, Ao Yinhuan, et al.2012.Numerical simulation of impact of ecological environment change on lake effect in the source region of the Yellow River[J].Plateau Meteor, 31(6):1591-1600.<br/>李照国, 吕世华, 奥银焕, 等.2012.黄河源区生态环境变化对湖泊效应影响的数值模拟[J].高原气象, 31(6):1591-1600.
[35]Liu Shuhua, Wen Pinghui, Zhang Yunyan, et al.2001.Sensitivity tests of interaction between land surface physical process and atmospheric boundary layer[J].Acta Meteor Sinica, 59(5):533-548.<br/>刘树华, 文平辉, 张云雁, 等.2001.陆面过程和大气边界层相互作用敏感性实验[J].气象学报, 59(5):533-548.
[36]Lü Yangqiong, Yang Xianyu, Ma Yaoming.2007.Numerical simulation of summer circulation atmospheric boundary layer characteristics over Qinghai Lake[J].Plateau Meteor, 24(4):686-692.<br/>吕雅琼, 杨显玉, 马耀明.2007.夏季青海湖局地环流及大气边界层特征的数值模拟[J].高原气象, 24(4):686-692.
[37]Lü Yaqiong, Ma Yaoming, Li maoshan, et al.2008.Study on characteristic of atmospheric boundary layer over lake Namco region, Tibetan Plateau[J].Plateau Meteor, 27(6):1205-1210.<br/>吕雅琼, 马耀明, 李茂善, 等.2008.青藏高原纳木错湖区大气边界层结构分析[J].高原气象, 27(6):1205-1210.
[38]Ma Ronghua, Yang Guishan, Duan Hongtao, et al.2011.China's lakes at present:Number, area and spatial distribution[J].Science in China:Earth Sci, 41(3):394-401.<br/>马荣华, 杨桂山, 段洪涛, 等.2011.中国湖泊的数量、面积与空间分布[J].中国科学:地球科学, 41(3):394-401.
[39]Ren Xiaoqian, Sun Shufen, Chen Wen, et al.2013.A review of researches on the lake numerical modeling[J].Adv Earth Sci, 28(3):347-356.<br/>任晓倩, 孙菽芬, 陈文, 等.2013.湖泊数值模拟研究现状综述[J].地球科学进展, 28(3):347-356.
[40]Wan Binbin.2014.The spatial distribution and temporal variation of sensible and latent heat flux on the Tibetan Plateau by using MODIS data[D].Beijing:University of Chinese Academy of Sciences, 1-127.<br/>王宾宾. 2014. 利用MODIS资料估算青藏高原感热和潜热通量的时空分布及变化[D]. 北京: 中国科学院大学, 1-127.
[41]You Qinglong, Kang Shichang, Li Chaoliu, et al.2007.Variation features of meteorological elements at Namco station, Tibetan Plateau[J].Plateau Meteor, 33(3):54-60.<br/>游庆龙, 康世昌, 李潮流, 等.2007.青藏高原纳木错气象要素变化特征[J].气象, 33(3):54-60.
Outlines

/