The influence of latent heating and its feedback effect on a Qinghai-Tibetan Plateau vortex occurring on 29 July 2009 was examined by using the WRF model in this study. Two experiments were conducted. In the control experiment, all physical processes were retained. In the sensitivity experiment, latent heat released by large-scale and cumulus convective precipitation was removed, while other physical processes were kept. By comparing model results and reanalysis data, it is found that the model can simulate the vortex moving path, intensity and the vortex-induced precipitation well in the control experiment. Without taking the latent heating into account, the simulated vortex moves quite slowly and disappear in the middle of the plateau, with little precipitation. The comparison of these two numerical simulations demonstrates that there is a positive feedback mechanism between the latent heating and the convection. The latent heating leads to intensive convective activity, and the convection extends to the upper level, thus much latent heat releases to the atmosphere. The potential vortices diagnostic analysis shows that, in low level, positive potential vorticity (PV) tendency caused by the vertical gradient of latent heating is beneficial to the strengthening and migrating of the plateau vortex. The PV tendency generated by vertical flux divergence term is contrary to that caused by vertical gradient of latent heating. In the development period of plateau vortex, because of the positive feedback mechanism between the latent heating and the convection, the positive PV tendency generated by the vertical gradient of latent heating increases rapidly, and the latent heating plays a leading role in the PV change at low levels. When the vortex develops into mature period, the contribution of latent heating decreases and divergence terms play important roles.
[1]Bin Wang. 1987. The development mechanism for Tibetan Plateau warm vortices[J]. J Atmos Sci, 44(20):2978-2994.
[2]Raymond D J. 1992. Nonlinear balance and potential vorticity thinking at large rossby number[J]. Quart J Roy Meteor Soc, 118:987-1015.
[3]Shen R, Reiter E R, Bresch J F. 1986. Numerical simulation of the development of vortices over the Qinghai-Xizang (Tibet) Plateau[J]. Meteorology and Atmospheric Physics, 35(1/2):70-95.
[4]Chen Bomin, Qian Zheng'an, Zhang Lisheng. 1996. Numerical simulation of the formation and development of vortices over the Qinghai-Xizang Plateau in summer[J]. Chinese J Atmos Sci, 20(4):491-502.<br/>陈伯民, 钱正安, 张立盛. 1996.夏季青藏高原低涡形成和发展的数值模拟[J].大气科学, 20(4):491-502.
[5]Ding Zhiying, Liu Jinglei, Lü Junning. 1994. The study of the mechanism of forming QXP-Vortex on 600 hPa[J]. Plateau Meteor, 13(4):411-418.<br/>丁治英, 刘京雷, 吕君宁. 1994. 600 hPa高原低涡生成机制的个例探讨[J].高原气象, 13(4):411-418.
[6]Hu Mengling, You Qinglong, Lin Houbo. 2015. Comparative analyses of geopotential height and wind field from multiple reanalysis data over the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 37(5):1229-1244. DOI:10. 7522/j. isnn. 1000-0240. 2015. 0137.<br/>胡梦玲, 游庆龙, 林厚博. 2015.青藏高原地区多套位势高度和风场再分析资料的对比分析[J].冰川冻土, 37(5):1229-1244.
[7]Li Guoping, Zhao Bangjie. 2002. A Dynamical Study of the Role of Surface Sensible Heating in the Structure and Intensification of the Tibetan Plateau Vortices[J]. Chinese J Atmos Sci, 26(4):519-525.<br/>李国平, 赵邦杰. 2002.地面感热对青藏高原低涡流场结构及发展的作用[J].大气科学, 26(4):519-525.
[8]Li Ruiqing, Lu Shihua, Han bo, et al. 2012. Preliminary comparison and analyses of air temperature at 2 m height between three reanalysis data-sets and observation in the east of Qinghai-Xiang Plateau[J]. Plateau Meteor, 31(6):1488-1502.<br/>李瑞青, 吕世华, 韩博, 等. 2012.青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J].高原气象, 31(6):1488-1502.
[9]Liu Xiaoran, Li Guoping. 2014. Numerical simulation and potential vorticity diagnosis of an eastward moving southwest vortex[J]. Plateau Meteor, 33(5):1204-1216. DOI:10. 7522/j. issn. 1000-0534. 2013. 00151.<br/>刘晓冉, 李国平. 2014.一次东移型西南低涡的数值模拟及位涡诊断[J].高原气象, 33(5):1204-1216.
[10]Luo Siwei, Yangyang. 1992. A case study on numerical simulation of summer vortex over Qinghai-Xizang (Tibetan) plateau[J]. Plateau Meteor, 11 (1):39-48.<br/>罗四维, 杨洋. 1992.一次青藏高原夏季低涡的数值模拟研究[J].高原气象, 11(1):39-48.
[11]Luo Siwei, Yangyang, Lü Shihua. 1991. Diagnostic analyses of a summer vortex over Qinghai-Xizang plateau for 29-30 June 1979[J]. Plateau Meteor, 10 (1):1-12.<br/>罗四维, 杨洋, 吕世华. 1991.一次青藏高原夏季低涡的诊断分析研究[J].高原气象, 10(1):1-12.
[12]Shen Yan, Feng Mingnong, Zhang Hongzheng, et al. 2010. Interpolation methods of China daily precipitation data[J]. Appl Meter Sci, 21(3):279-286.<br/>沈艳, 冯明农, 张洪政, 等. 2010.我国逐日降水量格点化方法[J].应用气象学报, 21(3):279-286.
[13]Song Wenwen, Li Guoping. 2011. Numerical Simulation and Structure Characteristic Analysis of a Plateau Vortex Process[J]. Plateau Meteor, 30(2):267-276.<br/>宋雯雯, 李国平. 2011.一次高原低涡过程的数值模拟与结构特征分析[J].高原气象, 30(2):267-276.
[14]Song Wenwen, Li Guoping, Tang Qiankui. 2012. Numerical simulation of the effect of heating and water vapor on two cases of plateau vortex[J]. Chinese J Atmos Sci, 36(1):117-129.<br/>宋雯雯, 李国平, 唐钱奎. 2012.加热和水汽对两例高原低涡影响的数值试验[J].大气科学, 36(1):117-129.
[15]Tian Shanru, Duan Anmin, Wang Ziqian, et al. 2015. Interaction of surface heating, the Tibetan Plateau vortex, and a convective system:A case study[J]. Chinese J Atmos Sci, 39 (1):125 136. DOI:10. 3878/j. issn. 1006-9895. 1404. 13311.<br/>田珊儒, 段安民, 王子谦, 等. 2015.地面加热与高原低涡和对流系统相互作用的一次个例研究[J].大气科学, 39(1):125-136.
[16]Tu Nini, He Guangbi. 2010. Case Analysis on Two Low Vortexes Induced by Tibetan Plateau Shear Line[J]. Plateau Meteor, 29(1):90-98.<br/>屠妮妮, 何光碧. 2010.两次高原切变线诱发低涡活动的个例分析[J].高原气象, 29(1):90-98.
[17]Xun Xueyi, Hu Zeyong, Wu Xuehong, et al. 2011. Comparative analyses of three geopotential height reanalysis data in Qinghai-Xizang Plateau[J]. Plateau Meteor, 30(6):1444-1452.<br/>荀学义, 胡泽勇, 吴学宏, 等. 2011.三套位势高度再分析资料在青藏高原地区的对比分析[J].高原气象, 30(6):1444-1452.
[18]Wang Bin. 2011. Comparison between NCEP and NASA reanalysis data in Qinghai-Tibet Plateau area and activities of South Asia High and its influence on drought and flood anomaly of China in summer[D]. Beijing:Chinese Academy of Meteorological Sciences, 8-24.<br/>王斌. 2011. 高原地区NASA与NCEP再分析资料对比和南亚高压活动及其旱涝影响分析[D]. 北京: 中国气象科学研究院, 8-24.
[19]Wu Di, Chu Zhigang, Yan Liqi. 2015. Analysis on potential vorticity budget on a development process of cold vortex over Northeast China[J]. Plateau Meteor, 34(1):103-112. DOI:10. 7522/j. issn. 1000-0534. 2013. 00121.<br/>吴迪, 楚志刚.闫立奇. 2015.东北冷涡发展过程的位涡收支分析[J].高原气象, 34(1):103-112.
[20]Wu Haiying, Shou Shaowen. 2002. Potential vorticity disturbance and cyclone development[J]. Journal of Nanjing Institute of Meteorology, 25 (4):510-518.<br/>吴海英, 寿绍文. 2002.位涡扰动与气旋的发展[J].南京气象学院学报, 25(4):510-517.
[21]Ye Duzheng, Gao Youxi. 1979. The Tibetan Plateau meteorology[M]. Beijing:Science Press, 122-126.<br/>叶笃正, 高由禧. 1979.青藏高原气象学[M].北京:科学出版社, 122-126.
[22]Yu Shahua, Gao Wenliang. 2006. Obeservational analysis on the movement of vortices before/after moving out the Tibetan Plateau[J]. Acta Meteor Sinica, 64(3):392-399.<br/>郁淑华, 高文良. 2006.高原低涡移出高原的观测事实分析[J].气象学报, 64(3):392-399.
[23]Yuan Jiashuang, Shou Shaowen. 2002. Genesis and development of cyclone with upper/lower potential vorticity (PV) anomaly、diabatic heating[J]. J Trop Meteor, 18(2):121-130.<br/>袁佳双, 寿绍文. 2002.高低空位涡扰动、非绝热加热与气旋的发生发展[J].热带气象学报, 18(2):121-130.
[24]Zheng Yongjun, Wu Guoxiong, Liu Yimin. 2013. Dynamical and thermal problems in vortex development and movement. Part Ⅰ:A PV-Q view[J]. Acta Meteor Sinica, 71(2):185-197.<br/>郑永骏, 吴国雄, 刘屹岷. 2013.涡旋发展和移动的动力和热力问题Ⅰ:PV-Q观点[J].气象学报, 71(2):185-197.