A storm-scale ensemble was conducted by WRF model during Beijing "7·21" extreme precipitation event. Three initial perturbation methods is tested. The first one is produced by ETKF update and forecast cycle which contained analysis uncertainty. The second method (DOWN) is downscaled from NCEP global forecast perturbation, and the third one is produced by blending ETKF and DOWN using barnes filter with wavelength of 180 km (80~280 km). Results show that each perturbation energy can grow with time, in which ETKF has more medium and small scale energy due to flow-dependent analysis uncertainty and DOWN has more large scale energy in early time. BLEND has the most perturbation energy during most forecast time. Energy from each perturbation all grow to medium scale (64~128 km) and the fastest growing composition are focused on small scale at early forecast hours, while the medium scale component grow slowly. These results motivate further studies on how to choose properly wavelength to construct a blending initial perturbation. When coming to the error of precipitation, spurious perturbation may lead to small spurious precipitation in early hours. Forecast perturbations for different methods all have better performance in sampling error during front precipitation than warm area precipitation. All in all, ETKF has advantage in small scale and lead time error sample and DOWN is better at large scale in the later forecast time, BLEND has both advantages of ETKF and DOWN during the whole forecast time. The threat score also show that BLEND has the best overall performance.
ZHUANG Xiaoran
,
MIN Jinzhong
,
WU Tianjie
,
DENG Xu
,
CAI Yuanchen
. Development Mechanism of Multi-scale Perturbation Based on Different Perturbation Methods in convection-allowing ensemble prediction[J]. Plateau Meteorology, 2017
, 36(3)
: 811
-825
.
DOI: 10.7522/j.issn.1000-0534.2016.00049
[1]Bowler N E, Mylne K R. 2009. Ensemble transform Kalman filter perturbations for a regional ensemble prediction system[J]. Quart J Roy Meteor Soc, 135(640):757-766.
[2]Caron J F. 2013. Mismatching perturbations at the lateral boundaries in limited-area ensemble forecasting:a case study[J]. Mon Wea Rev, 141(1):356-374.
[3]Casati B, Ross G, Stephenson D B. 2004. A new intensity scale approach for the verification of spatial precipitation forecasts[J]. Meteor Appl, 11(2):141-154.
[4]Eckel F, Mass C F. 2005. Aspects of effective mesoscale, short-range ensemble forecasting[J]. Wea Forecasting, 20:328-350.
[5]Gao F, Childs P P, Huang X Y, et al. 2014. A relocation-based initialization scheme to improve track-forecasting of tropical cyclones[J]. Adv Atmos Sci, 31(1):27-36.
[6]Hohenegger C, LuthiD, Schar C. 2006. Predictability mysteries in cloud-resolving models[J]. Mon Wea Rev, 134:2095-2107.
[7]Hohenegger C, Schar C. 2007a. Atmospheric predictability at synoptic versus cloud-resolving scales[J]. Bull Amer Meteor Soc, 88(11):1783-1793.
[8]Hohenegger C, Schar C. 2007b. Predictability and error growth dynamics in cloud-resolving models[J]. J Atmos Sci, 64(12):4467-4478.
[9]Hohenegger C, Walser A, Langhans W, et al. 2008. Cloud-resolving ensemble simulations of the August 2005 Alpine flood[J]. Quart J Roy Meteor Soc, 134(633):889-904.
[10]Hollan M A, Ancell B C. 2015. Ensemble Mean Storm-Scale Performance in the Presence of Nonlinearity[J]. Mon Wea Rev, 143(12):5115-5133.
[11]Johnson A, Wang X G, Xue M, et al. 2014. Multiscale characteristics and evolution of perturbations for warm season convection-allowing precipitation forecast:Dependence on background flow and method of perturbation[J]. Mon Wea Rev, 142(3):1053-1073.
[12]Lorenz E N. 1969. The predictability of a flow which possesses many scales of motion[J]. Tellus, 21(3):289-307.
[13]Ma J, Zhu Y, Hou D, et al. 2014. Ensemble transform with 3D rescaling initialization method[J]. Mon Wea Rea, 142:4053-4072.
[14]Montani A, Cesari D, Marsigli C, et al. 2011. Seven years of activity in the field of mesoscale ensemble forecasting by the Cosmo-Leps system:Main achievements and open challenges[J]. Tellus, 63(3):605-624.
[15]Rodwell M J, Magnusson L, Bauer P, et al. 2013. Characteristics of occasional poor medium-range weather forecasts for Europe[J]. Bull Amer Meteor Soc, 94(9):1393-1405.
[16]Szintai B, Ihász I. 2006. The dynamical downscaling of ECMWF EPS products with the ALADIN mesoscale limited area model:preliminary evaluation[J]. Quarterly Journal of the Hungarian Meteorological Service, 110(3/4):253-277.
[17]Toth Z, Kalnay E. 1997. Ensemble forecasting at NCEP and the breeding method[J]. Mon Wea Rea, 125:3297-3319.
[18]Wang Y, Bellus M, Geleyn J F, et al. 2014. A new method for generating initial condition perturbations in a regional ensemble prediction system:Blending[J]. Mon Wea Rev, 142(5):2043-2059.
[19]Wei M, Toth Z. 2003. A new measure of ensemble performance:Perturbation versus error correlation analysis (PECA)[J]. Mon Wea Rev, 131(8):1549-1565.
[20]Zhang F, Snyder C, Rotunno R. 2003. Effects of moist convection on mesoscale predictability[J]. J Atmos Sci, 60(9):1173-1185.
[21]Zhang F, Odins A M, Nielsen-Gammon J W. 2006. Mesoscale predictability of an extreme warm-season precipitation event[J]. Wea Forecasting, 21:149-166.
[22]Gao Feng, Min Jinzhong, Kong Fanyou. 2010. Experiment of the storm-scale ensemble forecast based on breeding of growing mode[J]. Plateau Meteor, 29(2):429-436.<br/>高峰, 闵锦忠, 孔凡铀. 2010.基于增长模繁殖法的风暴尺度集合预报试验[J].高原气象, 29(2):429-436.
[23]Min Jinzhong, Gao Feng, Kong Fanyou. 2009. The Dynamics of Error Growth and Propagation in Storm-Scale System[C]//. The 7th Conference ofNnational Dynamic Meteorology, Jiangdezhen, Jiangxi Province.<br/>闵锦忠, 高峰, 孔凡铀. 2009. 风暴尺度系统中初始误差增长和传播的动力机制分析[C]//第七次全国动力气象会议, 江西景德镇.
[24]Sun Jianhua, Zhao Sixiong, Fu Shenming, et al. 2013. Multi-scale characteristics of record heavy rainfall over Beijing area on July 21, 2012[J]. Chinese J Atmos Sci, 37(3):703-718.<br/>孙建华, 赵思雄, 傅慎明, 等. 2013. 2012年7月21日北京特大暴雨的多尺度特征[J].大气科学, 37(3):705-718.
[25]Tang Pengyu, He Hongrang, Yang Xiangrong, et al. 2015. Research and analysis of dry intrusion during Beijing '7·21' extreme torrential rain[J]. Plateau Meteor, 34(1):210-219. DOI:10. 7522/j. issn. 1000-0534. 2013. 00128.<br/>汤鹏宇, 何宏让, 阳向荣, 等. 2015.北京"7·21"特大暴雨中的干侵入分析研究[J].高原气象, 34(1):210-219.
[26]Yu Xiaoding. 2012. Investigation of Beijing extreme flooding event on 21 July 2012[J]. Meteor Mon, 38(11):1313-1329.<br/>俞小鼎. 2012. 2012年7月21日北京特大暴雨成因分析[J].气象, 38(11):1313-1329.
[27]Zhang Linna, Guo Rui, He Na, et al. 2015. Study on whether a tornado occurred of '7·21' rainstorm in Beijing[J]. Plateau Meteor, 34(4):1074-1083. DOI:10. 7522/j. issn. 1000-0534. 2014. 00025.<br/>张琳娜, 郭锐, 何娜, 等. 2015. "7·21"北京特大暴雨过程龙卷形成可能性探究[J].高原气象, 34(4):1074-1083.
[28]Zhuang Xiaoran, Min Jinzhong, Cai Yuanchen, et al. 2017. Optimal design of lateral boundary condition perturbation method in storm-scale ensemble forecast:A case study[J]. J Meteor Sci, 37(1):21-29.<br/>庄潇然, 闵锦忠, 蔡沅辰, 等. 2017.风暴尺度集合预报最优侧边界条件扰动方法设计:个例分析[J].气象科学, 37(1):21-29.
[29]Zhuang Xiaoran, Min Jinzhong, Cai Yuanchen, et al. 2016. Accounting for initial and lateral boundary condition uncertainties under different synoptic-scale forcing in convection-allowing ensemble prediction[J]. Acta Meteor Sinica, 74(2):244-258.<br/>庄潇然, 闵锦忠, 蔡沅辰, 等. 2016.不同大尺度强迫条件下考虑初始场与侧边界条件不确定性的对流尺度集合预报试验[J].气象学报, 74(2):244-258.