Implement of ENVISAT-ASAR Observed Data in the Wind Fields Investigation of the Offshore Area in Jiangsu Province

  • CHEN Yan ,
  • XU Xiazhen ,
  • HUANG Jingfeng ,
  • GUO Qiaoying
Expand
  • Jiangsu Climate Center, Nanjing 210009, China;Institute of Remote Sensing and Information Application, Zhejiang University, Hangzhou 310058, China

Received date: 2016-03-03

  Online published: 2017-06-28

Abstract

When the study the characteristics of offshore wind farms, less direct observations at sea is an important constraint. Satellite observation is high resolution and all-weather observation; It is an important method to overcome the lack of in-situ observations of wind fields over sea surface. This paper focus on the offshore area of Jiangsu Province and take advantage of the ASAR (Advanced Synthetic Aperture Radar) observations in ocean wind field's investigations. The ocean winds retrieval form 11 ASAR observed data in year 2008 are firstly evaluated with observations from 21 meteorological stations in coastal/offshore area, then the ocean winds retrieval form ASAR data are assimilated into the WRF (Weather Research and Forecasting model) for the numerical simulations. The results show that:The ocean winds retrieval form ASAR observed data agree well with the meteorological station observations. The wind speeds retrieval form ASAR data are slightly greater than station observations with an absolute error of 0. 5 m·s-1, a relative error of 15. 3% and a root mean square error (RMSE) of 1. 8 m·s-1; 83. 6% of the wind speeds retrieval form ASAR data are of a bias of ±2 m·s-1. The wind speeds retrieval form ASAR data overestimate while meteorological station observed wind speed less than 6. 0 m·s-1. The inversed wind directions have a north shift with a mean bias of -10. 6° and a RMSE of 39. 3°; 83. 6% of the wind directions retrieval form ASAR data are of a bias of ±22.5°. The ASAR observations are proved to be a good data source for sea surface wind field analysis. With the ocean winds retrieval form ASAR observed data assimilated, the RMSE of WRF model simulations in wind speed decreases from 1. 4 m·s-1 to 0. 9 m·s-1 in the January case, and from 2. 9 m·s-1 to 1. 6 m·s-1 to the July case, the simulated errors at 80% observation stations are less than 2. 0 m·s-1. The simulated RMSE in wind direction decreases from 73. 1° to 57. 3° in the January case, and from 67. 1° to 50. 6° in the July case, the simulated errors at 40% observation stations are less than ±22.5°. The wind speed of the site which is far away from the land is effect by the sea, while compare with the wind speed of land site. ASAR observed data carry more authentic wind information. The model performance improves better over the remote sea surface with the ASAR observations assimilated.

Cite this article

CHEN Yan , XU Xiazhen , HUANG Jingfeng , GUO Qiaoying . Implement of ENVISAT-ASAR Observed Data in the Wind Fields Investigation of the Offshore Area in Jiangsu Province[J]. Plateau Meteorology, 2017 , 36(3) : 852 -864 . DOI: 10.7522/j.issn.1000-0534.2016.00052

References

[1]Barthelmie R J, Pryor S C. 2003. Can satellite sampling of offshore wind speeds realistically represent wind speed distributions[J]. Appl Meteor, 42 (1):83-94.
[2]Beal R C, Kudryavtsev V N, Thompson D R, et al. 1997. The influence of the marine atmospheric boundary layer on ERS1 synthetic aperture radar imagery of the Gulf Stream[J]. J Geophys Res, 102(C3):5799-5814.
[3]Beaucage P, Glazer A, Choisnard J, et al. 2007. Wind assessment in a coastal environment using synthetic aperture radar satellite imagery and a numerical weather prediction model[J]. Canadian Journal of Remote Sensing, 33(5):368-377.
[4]Chen Yan, Liu Huizhi, Xiang Ying, et al. 2012. Numerical simulation of wind energy characteristics in Jiangsu coastal area[J]. Advanced Materials Research, 351:2156-2159.
[5]Christiansen M B, Koch W, Horstmann J, et al. 2006. Wind resource assessment from C-band SAR[J]. Remote Sens Environ, 105:68-81.
[6]Elfouhaily T, Thompson D R, Vandemark D, et al. 1999. A newbiostatic model for electromagnetic scattering from perfectly conducting random surfaces[J]. Waves in Random Media, 9:281-295.
[7]Hasager C B, Barthelmie R J, Christtiansen M B, 2006. Quantifying offshore wind resource from satellite wind maps:Study area the North Sea[J]. Wind Energy, 9(12):63-74.
[8]Hasager C B, Nielsen M, Astrup P, et al. 2005. Offshore wind resource estimation from satellite SAR wind field maps[J]. Wind Energy, 8(4):403-419.
[9]Hersbach H, Stoffelen A, Haan S D. 2007. An improved C-bandscatter meter ocean geophysical model function:CMOD5[J]. J Geophys Res:Oceans, 112(C3):6-24.
[10]Horstmann J, Kock W, Lehner S, et al. 2000. Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization[J]. IEEE Trans Geosci Remote Sens, 38:2122-2131.
[11]Jeng D S. 2008. Offshore wind energy-the next North Sea oil:Potentials and assessments of off shore wind energy in Australia[J]. Sea Technology Magazine, 49 (4):33-35.
[12]Keith W A, Robert J D, Peter A C. 2001. A simple temporal and spatial analysis of flow in complex terrain in the context of wind energy modeling[J]. Bound Layer Meteor, 98:275-295.
[13]Li Ji Hang, Guo Zhen Hai, Wang Hui Jun. 2014. Analysis ofwind power assessment based on the WRF Model[J]. Atmos Oceanic Sci Lett, 7(2):126-131.
[14]Manwell J F, Rogers A L, McGowan J G, et al. 2002. An offshore wind resource assessment study for New England[J]. Renewable Energy, 27(2):175-187.
[15]Quilfen Y, Chapron B, Elfouhaily T, et al. 1998. Observation of tropical cyclones by high-resolution scatterometry[J]. J Geophys Res, 103 (c4):7767-7786.
[16]Quilfen Y, Prigent C, Chapron B, et al. 2007. The potential of QuikSCAT and WindSat observations for the estimation of sea surface wind vector under severe weather conditions[J]. J Geophys Res, 112(C09):C09023. DOI:10. 1029/2007JC004163.
[17]Risien C M, Dudley B C. 2008. A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatter meter data[J]. J Phys Oceanography, 38:2379-2413.
[18]Sempreviva A M, Barthelmie R J, Pryor S C. 2008. Review of methodologies for offshore wind resource assessment in European seas[J]. Surveys in Geophysics, 29(6):471-497.
[19]Stoffelen A D, Anderson D. 1999. Scatterometer data interpretation:transfer function CMOD4[J]. J Geophys Res, 102(c3):5767-5780.
[20]Vachon P W, Dobson F W. 1996. Validation of wind vector retrieval from ERS-1 SAR images over the ocean[J]. The Global Atmosphere and Ocean System, 5:177-187.
[21]Wang Ziqian, Duan Anmin. 2012. A new ocean mixed-layer model coupled into WRF[J]. Atmos Oceanic Sci Lett, 5(3):170-175.
[22]Yu W, Benoit R, Girard C, et al. 2006. Wind energy simulation toolkit (WEST):A wind mapping system for use by the wind-energy industry[J]. Wind Engineering, 30:15-33.
[23]Chang Rui, Zhu Rong, Zhou Rongwei, et al. 2014. An application of high resolution SAR wind retrievals to off-shore wind resources assessment in China[J]. Acta Meteor Sinica, 72(3):606-613.<br/>常蕊, 朱蓉, 周荣卫, 等. 2014.高分辨率合成孔径雷达卫星反演风场资料在中国近海风能资源评估中的应用研究[J].气象学报, 72(3):606-613.
[24]Chen Yan, Cheng Ting, Li jinxi. 2014. Study on spatial attenuation of wind speed in the coast area of Jiangsu[J]. Plateau Meteor, 33(4):1086-1092. DOI:10. 7522/j. issn. 1000-0534. 2013. 00052.<br/>陈燕, 程婷, 李进喜. 2014.江苏沿海风速空间衰减规律研究[J].高原气象, 33(4):1086-1092.
[25]Chen Yanling, Huang Cheng, Ding Xiaoli, et al. 2007. Study on ocean wind vector retrieval from ERS-SAR image[J]. Chinese J Geophys, 50(6):1688-1694.<br/>陈艳玲, 黄珹, 丁晓利, 等. 2007. ERS2-SAR反演海洋风矢量的研究[J].地球物理学报, 50(6):1688-1694.
[26]Jiang Xingwei, Song Qingtao. 2010. A climatology of sea surface wind speed and wind stress fields constructed from scatterometer observations[J]. Acta Oceanologica Sinica, 32(6):83-90.<br/>蒋兴伟, 宋清涛. 2010.基于微波散射计观测的气候态海面风场和风应力场[J].海洋学报, 32(6):83-90.
[27]Li Minghua, Fan Shaojia, Wang Baomin, et al. 2007. Sea-land breeze on the west coast of the Pearl River Mouth in October 2004[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 46(2):123-125.<br/>李明华, 范绍佳, 王宝民, 等. 2007. 2004年10月珠江口西岸海陆风特征观测研究[J].中山大学学报(自然科学版), 46(2):123-125.
[28]Li Yan, Tang Jianping, Wang Yuan, et al. 2009. Application of dynamical down scaling method for assessment of wind energy resources[J]. Climatic Environ Res, 14 (2):192-200.<br/>李艳, 汤剑平, 王元, 等. 2009.区域风能资源评价分析的动力降尺度研究[J].气候与环境变化, 14(2):192-200.
[29]Shi Chune, Li Yaosun, Yang Jun, et al. 2015. Comparison of simulations on winter sounding profiles in PBL in East China between WRF and MM5[J]. Plateau Meteor, 34(2):389-400. DOI:10.7522/j.issn.1000-0534.2013.00206.<br/>石春娥, 李耀孙, 杨军, 等. 2015. MM5和WRF对中国东部地区冬季边界层模拟效果比较[J].高原气象, 34(2):389-400.
[30]Shi Xiaohui, Xu Xiangde, Xie lian. 2006. Reliability analyses of anomalies of NCEP/NCAR reanalysis wind speed and surface temperature in climate change research in China[J]. Acta Meteor Sinica, 64(6):709-722.<br/>施晓晖, 徐祥德, 谢立安. 2006. NCEP/NCAR再分析风速、表面气温距平在中国区域气候变化研究中的可信度分析[J].气象学报, 64(6):709-722.
[31]Song Lili, Mao Huiqin, Tang Haiyan, et al. 2004. Observation and analysis of Guangdong coastal gales in the near-surface layer[J]. J Trop Meteor, 20(6):731-736.<br/>宋丽莉, 毛慧琴, 汤海燕, 等. 2004.广东沿海近地层大风特性的观测分析[J].热带气象学报, 20(6):731-736.
[32]Wang Jun, Wang Huijun. 2013. Forecasting of wind speed in Rudong, Jiangsu Province, by the WRF model[J]. Climatic Environ Res, 18 (2):145-155.<br/>汪君, 王会军. 2013. WRF模式对江苏如东地区风速预报的检验分析[J].气候与环境研究, 18(2):145-155.
[33]Wang Tie. 2007. Devivation of wind field in Huanghai Sea by synthetic aperture radar[J]. Transaction of Oceanology and Limnology, 4:10-13.<br/>王铁. 2007.合成孔径雷达反演黄海海面风场[J].海洋湖沼通报, 4:10-13.
[34]Yang Jinsong, Huang Weigen, Zhou Changbao, et al. 2001. Coastal ocean surface wind retrieval from SAR imagery[J]. J Remote Sens, 5(1):13-18.<br/>杨劲松, 黄韦艮, 周长宝, 等. 2001.合成孔径雷达图像的近岸海面风场反演[J].遥感学报, 5(1):13-18.
[35]Zhang Chi, Wang Donghai, Gong Yuanfa. 2015. Dynamic modeling study of highly resolved near-surface wind based on WRF/CALMET[J]. Meteor Mon, 41(1):34-44.<br/>张弛, 王东海, 巩远发. 2015.基于WRF/CALMET的近地面精细化风场的动力模拟试验研究[J].气象, 41(1):34-44.
[36]Zhang De, Zhu Rong, Luo Yong, et al. 2008. Application of wind energy simulation toolkit (WEST) to wind energy numerical simulation of China[J]. Plateau Meteor, 27(1):202-207.<br/>张德, 朱蓉, 罗勇, 等. 2008.风能模拟系统WEST在中国风能数值模拟中的应用[J].高原气象, 27(1):202-207.
[37]Zhang Hongyan, Ding Yuguo, Liu Min, et al. 2008. Numerical simulation of wind energy resources distribution in Hubei Provicne[J]. Meteor Environ Sci, 31(2):35-38.<br/>张鸿雁, 丁裕国, 刘敏, 等. 2008.湖北省风能资源分布的数值模拟[J].气象与环境科学, 31(2):35-38.
[38]Fan Kaiguo, Huang Weigen, Chang Junfang, et al. 2010. Sea surface wind speeds retrieval by SAR combing with the NCEP/QSCAT blended wind directions[J]. Remote Sensing Technology and Application, 25(6):873-876.<br/>范开国, 黄韦艮, 常俊芳, 等. 2010. NCEP/QSCAT混合风向用于SAR图像反演高分辨率海面风速[J].遥感技术与应用, 25(6):873-876.
[39]Zhang Yi, Jiang Xingwei, Song Qingtao. 2011. Ocean wind retrieval from Synthetic Aperture Radar images based on external initial wind direciton[J]. Remote Sensing Technology and Application, 26(4):461-468.<br/>张毅, 蒋兴伟, 宋清涛. 2011.基于外部风向初始信息的SAR影像海面风场反演研究[J].遥感技术与应用, 26(4):461-468.
Outlines

/