Spatial-Temporal Validation of TRMM 3B42V7 Precipitation Products and Analysis of Precipitation Characteristics in the Upper Reaches of Nujiang River

  • LI Meng ,
  • QIN Tianling ,
  • LIU Shaohua ,
  • LU Yajing
Expand
  • State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Institute of Water Resources and Hydropower Research(IWHR), Beijing 100038, China

Received date: 2016-01-26

  Online published: 2017-08-28

Abstract

The Nujiang river is a typical area of lacking data with complicated terrain and climate characteristics. TRMM (Tropical Rainfall Measuring Mission) precipitation data can effectively describe the spatial distribution characteristics of regional precipitation, and it has great reference value to the area of lacking information. We use TRMM 3B42V7 data and 18 weather stations data to explore the spatial and temporal distribution characteristics of precipitation and analyze the accuracy of TRMM 3B42V7 data in the upper reaches of Nujiang river. The correlation coefficient method and spatial analysis method are used to solve the problem. By analyzing the correlation coefficient, it shows that the best correlation coefficient between TRMM 3B42V7 data and the site observation data occurs at monthly scale (R>0. 9), second is yearly scale (R>0. 5), the worst is daily scale (R < 0. 5). The two sets of data have strong correlation under monthly scale when it comes to areal precipitation (R≈0. 98). Time series also fit well though TRMM 3B42V7 data is slightly larger than the site observation data in the month of abundant precipitation. Spatial-temporal comparative analysis indicates that precipitation spatial distribution has good consistency of these two group data at different time scales though the local distribution characteristics are different. There is an underestimation tendency of TRMM 3B42V7 data in the northwest of the basin, and overestimation tendency in the southeast. Precipitation in most other area has little difference between TRMM 3B42V7 data and the site observation data. TRMM 3B42V7 data is also used to analyze the seasonal proportion of precipitation in the basin and it is found that seasonal patterns of precipitation in study area vary greatly. Precipitation in summer (from June to August) account for a large proportion of total annual precipitation. The ratio of precipitation in summer is 42%~72%, while the total ratios of spring (from March to May), autumn (from September to November) and winter (from December to February) to annual precipitation are 28%~58%.

Cite this article

LI Meng , QIN Tianling , LIU Shaohua , LU Yajing . Spatial-Temporal Validation of TRMM 3B42V7 Precipitation Products and Analysis of Precipitation Characteristics in the Upper Reaches of Nujiang River[J]. Plateau Meteorology, 2017 , 36(4) : 950 -959 . DOI: 10.7522/j.issn.1000-0534.2016.00071

References

[1]Almazroui M. 2011. Calibration of TRMM rainfall climatology over Saudi Arabia during 1998 2009[J]. Atmos Res, 99(3/4):400-414.
[2]Chiu L S, Liu Z, Vongsaard J, et al. 2006. Comparison of TRMM and water district rain rates over New Mexico[J]. Adv Atmos Sci, 23(1):1-13.
[3]Dai A, Lin X, Hsu K. 2007. The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low-and mid-latitudes[J]. Climate Dyn, 29(7/8):727-744.
[4]Huffman G J, Bolvin D T, Nelkin E J, et al. 2007. The TRMM multisatellite precipitation analysis (TMPA):Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. J Hydrometeor, 8(1):38-55.
[5]Mantas V M, Liu Z, Caro C, et al. 2015. Validation of TRMM multi-satellite precipitation analysis (TMPA) products in the Peruvian Andes[J]. Atmos Res, 163:132-145.
[6]Omotosho T V, Oluwafemi C O. 2009. One-minute rain rate distribution in Nigeria derived from TRMM satellite data[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 71(5):625-633.
[7]Pombo S, de Oliveira R P. 2015. Evaluation of extreme precipitation estimates from TRMM in Angola[J]. J Hydrol, 523:663-679.
[8]Bai Aijuan, Liu Xiaodong, Liu Changhai. 2011. Contrast of diurnal variations of summer precipitation between the Tibetan Plateau and Sichuan Basin[J]. Plateau Meteor, 30(4):852-859.<br/>白爱娟, 刘晓东, 刘长海. 2011.青藏高原与四川盆地夏季降水日变化的对比分析[J].高原气象, 30(4):852-859.
[9]Bai Aijuan, Liu Changhai, Liu Xiaodong. 2008. Diurnal variation of summer rainfall over the Tibetan Plateau and its neighboring regions revealed by TRMM multi-satellite precipitation analysis[J]. Chinese J Geophys, 51(3):704-714.<br/>白爱娟, 刘长海, 刘晓东. 2008. TRMM多卫星降水分析资料揭示的青藏高原及其周边地区夏季降水日变化[J].地球物理学报, 51(3):704-714.
[10]Du Lingtong, Tian Qingjiu, Huang Yan, et al. 2012. Drought monitoring based on TRMM data and its reliability validation in Shandong province[J]. Transactions of the Chinese Society of Agricultural Engineering, 28(2):121-126.<br/>杜灵通, 田庆久, 黄彦, 等. 2012.基于TRMM数据的山东省干旱监测及其可靠性检验[J].农业工程学报, 28(2):121-126.
[11]Fu Yunfei, Liu Qi, Zi Yong, et al. 2008. Summer precipitation and latent heating over the Tibetan Plateau based on TRMM measurements[J]. Plateau Mountain Meteor Res, 28(1):8-18.<br/>傅云飞, 刘奇, 自勇, 等. 2008.基于TRMM卫星探测的夏季青藏高原降水和潜热分析[J].高原山地气象研究, 28(1):8-18.
[12]Gu Zhihui, Shi Peijun, Chen Jin. 2006. Precipitation interpolation research over regions with sparse meteorological stations:A case study in Xilin Gole League[J]. Journal of Beijing Normal University (Natural Science), 42(2):204-208.<br/>辜智慧, 史培军, 陈晋. 2006.气象观测站点稀疏地区的降水插值方法探讨-以锡林郭勒盟为例[J].北京师范大学学报(自然科学版), 42(2):204-208.
[13]Hao Zhenchun, Tong Kai, Zhang Leilei, et al. 2011. Applicability analysis of TRMM precipitation estimates in Tibetan Plateau[J]. Hydrology, 31(5):18-23.<br/>郝振纯, 童凯, 张磊磊, 等. 2011. TRMM降水资料在青藏高原的适用性分析[J].水文, 31(5):18-23.
[14]He Hongyan, Guo Zhihua, Xiao Wenfa. 2005. Review on spatial interpolation techniques of rainfall[J]. Chinese J Ecology, 24(10):1187-1191.<br/>何红艳, 郭志华, 肖文发. 2005.降水空间插值技术的研究进展[J].生态学杂志, 24(10):1187-1191.
[15]Jiang Lujun, Li Guoping, Mu Ling, et al. 2014. Structural analysis of heavy precipitation caused by southwest vortex based on TRMM data[J]. Plateau Meteor, 33(3):607-614. DOI:10.7522/j.issn.1000-0534.2013.00094.<br/>蒋璐君, 李国平, 母灵, 等. 2014.基于TRMM资料的西南涡强降水结构分析[J].高原气象, 33(3):607-614.
[16]Xie Chengying, Li Minjiao, Zhang Xueqin, et al. 2015. Moisture transport features in summer and its rainfall effects over key region in southern margin of Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(2):327-337. DOI:10.7522/j.issn.1000-0534.2014.00034.<br/>解承莹, 李敏姣, 张雪芹, 等. 2015.青藏高原南缘关键区夏季水汽输送特征及其与高原降水的关系[J].高原气象, 34(2):327-337.
[17]Li Jijun. 1999. Studies on the geomorphological evolution of the Qinghai-Xizang (Tibetan) Plateau and Asian monsoon[J]. Marin Geol Quat Geol, 19(1):1-12.<br/>李吉均. 1999.青藏高原的地貌演化与亚洲季风[J].海洋地质与第四纪地质, 19(1):1-12.
[18]Liu Junfeng, Chen Rensheng, Han Chuntan, et al. 2010. Evaluating TRMM multi-satellite precipitation analysis using gauge precipitation and MODIS snow-cover products[J]. Adv Water Sci, 21(3):343-348.<br/>刘俊峰, 陈仁升, 韩春坛, 等. 2010.多卫星遥感降水数据精度评价[J].水科学进展, 21(3):343-348.
[19]Liu Peng, Fu Yunfei, Feng Sha, et al. 2010. A comparison of the precipitation from rain gauge observations with from TRMM PR measurements in the southern China[J]. Acta Meteor Sinica, 68(6):822-835. DOI:10.11676/qxxb2010.078.<br/>刘鹏, 傅云飞, 冯沙, 等. 2010.中国南方地基雨量计观测与星载测雨雷达探测降水的比较分析[J].气象学报, 68(6):822-835.
[20]Liu Zhixiong, Cai Ronghui, Deng Jianying, et al. 2013. Formation mechanism of freezing rain in Hunan Province in 2008[J]. Plateau Meteor, 32(2):456-467. DOI:10.7522/j.issn.1000-0534.2012.00044.<br/>刘志雄, 蔡荣辉, 邓见英, 等. 2013.2008年湖南冻雨成因研究[J].高原气象, 32(2):456-467.
[21]Luo San, Miao Junfeng, Niu Tao, et al. 2011. A comparison of TRMM 3B42 products with rain gauge observations in China[J]. Meteor Mon, 37(9):1081-1090.<br/>骆三, 苗峻峰, 牛涛, 等. 2011. TRMM测雨产品3B42与台站资料在中国区域的对比分析[J].气象, 37(9):1081-1090.
[22]Mao Jiangyu, Wu Guoxiong. 2012. Diurnal variations of summer precipitation overthe Asian monsoon region as revealed by TRMM satellite data[J]. Sci China Earth Sci, 42(4):564-576.<br/>毛江玉, 吴国雄. 2012.基于TRMM卫星资料揭示的亚洲季风区夏季降水日变化[J].中国科学:地球科学, 42(4):564-576.
[23]Qi Wenwen, Zhang Baiping, Pang Yu, et al. 2013. TRMM-data-based spatial and seasonal patterns of precipitation in the Qinghai-Tibet Plateau[J]. Scientia Geographica Sinica, 33(8):999-1005.<br/>齐文文, 张百平, 庞宇, 等. 2013.基于TRMM数据的青藏高原降水的空间和季节分布特征[J].地理科学, 33(8):999-1005.
[24]Zhang Meng, Huang Anning, Ji Xiaolong, et al. 2016. Validation of satellite precipitation products over Qinghai-Xizang Plateau region[J]. Plateau Meteor, 35(1):34-42. DOI:10.7522/j.issn.1000-0534.2014.00152.<br/>张蒙, 黄安宁, 计晓龙, 等. 2016.卫星反演降水资料在青藏高原地区的适用性分析[J].高原气象, 35(1):34-42.
[25]Zhao Yufei, Zhu Jiang. 2015. Assessing quality of grid daily precipitation datasets in China in recent 50 years[J]. Plateau Meteor, 34(1):50-58. DOI:10.7522/j.issn.1000-0534.2013.00141.<br/>赵煜飞, 朱江. 2015.近50年中国降水格点日值数据集精度及评估[J].高原气象, 34(1):50-58.
[26]Zhao Zhixuan, Yan Denghua, Wang Hao, et al. 2011. Predicting inflows to Tangjiashan barrier lake based on WEP model and TRMM precipitation data[J]. J Hydraul Eng, 42(7):848-856.<br/>赵志轩, 严登华, 王浩, 等. 2011.基于WEP模型和TRMM_PR的唐家山堰塞湖入湖径流预报[J].水利学报, 42(7):848-856.
[27]Zhu Jiang, Chen Xiuwan, Fan Qixiang, et al. 2011. A new procedure to estimate the rainfall erosivity factor based on tropical rainfall measuring mission (TRMM) data[J]. Sci China Tech Sci, 41(11):1483-1492.<br/>朱强, 陈秀万, 樊启祥, 等. 2011.基于TRMM的降雨侵蚀力计算方法[J].中国科学:技术科学, 41(11):1483-1492.
[28]Zi Yong, Xu Yinlong, Fu Yunfei. 2007. Climatological comparison studies between GPCP and rain gauges precipitations in China[J]. Acta Meteor Sinica, 65(1):63-74.<br/>自勇, 许吟隆, 傅云飞. 2007. GPCP与中国台站观测降水的气候特征比较[J].气象学报, 65(1):63-74.
Outlines

/