The background error covariance matrix based on properties of the ensemble prediction statistics play an important role in the ensemble Kalman filter data assimilation. However, data assimilation divergence occurs from the inaccurate estimate of the covariance matrix and the limited ensembles. In this study, based on an ensemble time-local H-infinity filter which inflates the eigenvalues of the analysis error covariance matrix, a new data assimilation filter method is proposed, referred to as the inflation transform matrix eigenvalues algorithm, in order to improve properties of the estimation. The properties of data assimilation is improved in the framework of ensemble filters according to the min-max criterion of robust filtering theory. Using the nonlinear Lorenz-96 chaos system, we investigate how the ensemble time-local H-infinity filter methods impacts the robustness of the assimilation systems under the selected change conditions, such as initial background conditions, force parameters, and performance level coefficients. It is show that the ensemble time-local H∞ filter has good robustness to the change of above parameters. Compared with traditional filter methods, robust filter methods can improve the assimilation effect.
BAI Yulong
,
ZHANG Zhuanhua
,
YOU Yuanhong
,
LIU Yingjuan
. A New Data Assimilation Method Based on Robust Ensemble Filter[J]. Plateau Meteorology, 2017
, 36(4)
: 1052
-1059
.
DOI: 10.7522/j.issn.1000-0534.2016.00072
[1]Altaf M U, Butler T, Luo X, et al. 2013. Improving short-range ensemble Kalman storm surge forecasting using robust adaptive inflation[J]. Mon Wea Rev, 141(8):2705-2720.
[2]Anderson J D. 1999. Aircraft Performance and Design[M]. Boston:WCB/McGraw Hill, 406-453.
[3]Bishop C H, Etherton B J, Majumdar S J. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part Ⅰ:Theoretical aspects[J]. Mon Wea Rev, 129(3):420-436.
[4]Bocquet M, Sakov P. 2012. Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems[J]. Nonlinear Processes in Geophysics, 19(3):383-399.
[5]Evensen G. 2003. The ensemble Kalman filter:Theoretical formulation and practical implementation[J]. Ocean Dyn, 53(4):343-367.
[6]Jaison T A, Youmin T. 2009. Sigma-Point Kalman Filter Data Assimilation Methods for Strongly Nonlinear Systems"[J]. Atmos Sci, 66:261-285.
[7]Hamill T M. 2001. An overview of ensemble forecasting and data assimilation[C] //conference on weather analysis and forecasting. 18:353-357.
[8]Hoteit I, Pham D T, Blum J. 2002. A simplified reduced order Kalman filtering and application to altimetric data assimilation in Tropical Pacific[J]. Journal of Marine systems, 36(1):101-127.
[9]Julier S J. 2003. The spherical simplex unscented transformation[C] //American Control Conference, 2003. Proceedings of the 2003. IEEE, 3:2430-2434.
[10]Lorenz E N, Emanuel K A. 1998. Optimal sites for supplementary weather observations:Simulation with a small model[J]. J Atmos Sci, 55(3):399-414.
[11]Luo X D, Hoteit I. 2013. Covariance inflation in the ensemble Kalman filter:A residual nudging perspective and some implications[J]. Mon Wea Rev, 141(10):3360-3368.
[12]Luo X D, Hoteit I. 2014. Ensemble Kalman filtering with residual nudging:An extension to state estimation problems with nonlinear observation operators[J]. Mon Wea Rev, 142(10):3696-3712.
[13]Luo X D, Hoteit I. 2011. Robust ensemble filtering and its relation to covariance inflation in the ensemble Kalman filter[J]. Mon Wea Rev, 139(12):3938-3953.
[14]Miyoshi T, Bishop C, Kalnay E, et al. 2011. FY2011 annual report of data assimilation and predictability studies for improving tropical cyclone intensity forecasts[R]. Maryland Univ College Park Dept of Atmospheric and Oceanic Science.
[15]Petersen G N, Majumdar S J, Thorpe A J. 2007. The properties of sensitive area predictions based on the ensemble transform Kalman filter (ETKF)[J]. Quart J Roy Meteor Soc, 133(624):697-710.
[16]Qiu C, Shao A, Xu Q, et al. 2007. Fitting model fields to observations by using singular value decomposition:An ensemble-based 4DVar approach[J]. Geophys Res Atmos, 112(D11):236-242.
[17]Sakov P, Bertino L. 2011. Relation between two common localisation methods for the EnKF[J]. Computational Geosciences, 15(2):225-237.
[18]Simon D. 2006. Optimal state estimation:Kalman, H infinity, and nonlinear approaches[M]. John Wiley & Sons.
[19]Triantafyllou G, Hoteit I, Luo X, et al. 2013. Assessing a robust ensemble-based Kalman filter for efficient ecosystem data assimilation of the Cretan Sea[J]. Journal of Marine Systems, 125:90-100.
[20]Wang D, Cai X. 2008. Robust data assimilation in hydrological modeling-A comparison of Kalman and H-infinity filters[J]. Adv WaterResour, 31(3):455-472.
[21]Wang X, Bishop C H, Julier S J. 2004. Which is better, an ensemble of positive-negative pairs or a centered spherical simplex ensemble?[J]. Mon Wea Rev, 132(7):1590.
[22]Whitaker J S, Hamill T M. 2002. Ensemble data assimilation without perturbed observations[J]. Mon Wea Rev, 130(7):1913-1924.
[23]Hu Chunmei, Chen Daojin, Yu Runling. 2010. Application of BP artificial neural network and support vector machines to ultraviolet radiation prediction[J]. Plateau Meteor, 29(2):539-544.<br/>胡春梅, 陈道劲, 于润玲. 2010.BP神经网络和支持向量机在紫外线预报中的应用[J].高原气象, 29(2):539-544.
[24]Li Huchao, Shao Aimei, He Dengxin, et al. 2015. Application of back-propagation neural network in predicting non-systematic error in numerical prediction model[J]. Plateau Meteor, 34(6):1751-1757. DOI:10. 7522/j. issn. 1000-0534. 2014. 00120.<br/>李虎超, 邵爱梅, 何邓新, 等. 2015.BP神经网络在估算模式非系统性预报误差中的应用[J].高原气象, 34(6):1751-1757.
[25]Liu Yaya, Mao Jietai, Liu Jun, et al. 2010. Research of BP neural network for microwave radiometer remote sensing retrieval of temperature, relative humidity, cloud liquid water profiles[J]. Plateau Meteor, 29(6):1514-1523.<br/>刘亚亚, 毛节泰, 刘钧, 等. 2010.地基微波辐射计遥感大气廓线的BP神经网络反演方法研究[J].高原气象, 29(6):1514-1523.
[26]Qiu Xiaobin, Qiu Chongjian. 2009. The suitability test of Ensemble square root filter with hybrid background error covariance[J]. Plateau Meteor, 28(6):1399-1407.<br/>邱晓滨, 邱崇践. 2009.混合误差协方差用于集合平方根滤波同化的试验[J].高原气象, 28(6):1399-1407.
[27]Shao Aimei, Qiu Xiaobin, Qiu Chongjian. 2011. Ensemble-based four-dimensional variational assimilation using hybrid samples[J]. Plateau Meteor, 30(3):583-593.<br/>邵爱梅, 邱晓滨, 邱崇践. 2011.使用混合样本的集合四维变分同化试验研究[J].高原气象, 30(3):583-593.