The uncertainty of the input parameters in land surface model can introduce simulation deviation. To improve the capability of the models and reduce the parameter uncertainties, usually the parameter optimization process is necessary. In this study, using the surface layer data observed in Wenjiang station and the particle swarm optimization (PSO) algorithm to optimize soil and vegetation parameters that difficult to obtain by observations in the SHAW (Simultaneous Heat and Water) model. On this basis, the SHAW model was run with the optimized and default parameters. Then the simulations were compared with the corresponding observations to investigate the effect of optimization parameters in land surface process simulation. The following conclusions were drawn:Using the optimized parameters calibrated by PSO algorithm can improve the simulation of the soil moisture and latent heat flux. The biases between simulated soil moisture and latent heat flux with the corresponding observations are decreased, but the net radiation, soil temperature and sensible heat flux simulation are not improved. This study suggests that PSO algorithm can be used for land surface model parameter optimization, but the simulation of all variable cannot be simultaneously improved only by optimization process.
[1]Crow W T, Wood E F, Pan M. 2003. Multiobjective calibration of land surface model evapotranspiration predictions using streamflow observations and spaceborne surface radiometric temperature retrievals[J]. J Geophys Res, 108(D23):2173-2181.
[2]Eberhart R C, Shi Y. 2001. Particle swarm optimization:Development, applications and resources[C] //Evolutionary Computation, Proceedings of the 2001 Congress on, IEEE, 1:81-86.
[3]Flerchinger G N, Hardegree S P. 2004. Modelling near-surface soil temperature and moisture for germination response predictions of post-wildfire seedbeds[J]. J Arid Environ, 59(2):369-385.
[4]Flerchinger G N, Pierson F B. 1997. Modelling plant canopy effects on variability of soil temperature and water:model calibration and validation[J]. J Arid Environ, 35(4):641-653.
[5]Flerchinger G N, Saxton K E. 1989. Simultaneous heat and water model of a freezing snow-residue-soil system I. Theory and development[J]. Transactions of the ASAE, 32(2):565-571.
[6]Foley J A, Prentice I C, Ramankutty N, et al. 1996. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics[J]. Global Biogeochemical Cycles, 10(4):603-628.
[7]Ganguly S, Nemani R, Baret F, et al. 2014. Green leaf area and fraction of photosynthetically active radiation absorbed by vegetation[M]. Biophysical Applications of Satellite Remote Sensing, Springer Berlin Heidelberg:43-61.
[8]Gill M K, Kaheil Y H, Khalil A, et al. 2006. Multiobjective particle swarm optimization for parameter estimation in hydrology[J]. Water Resour Res, 42(7):257-271.
[9]Guo Z, Dirmeyer P A. 2006. Evaluation of the second global soil wetness project soil moisture simulations:1. Intermodel comparison[J]. J Geophys Res, 111(D22):1-14.
[10]Gupta H, Bastidas L, Sorooshian S, et al. 1999. Parameter estimation of a land surface scheme using multicriteria methods[J]. J Geophys Res, 104(D16):19491-19503.
[11]Henderson-Sellers A, Pitman A J, Love P K, et al. 1995. The project for intercomparison of land surface parameterization schemes (PILPS):Phases 2 and 3[J]. Bull Amer Meteor Soc, 76(4):489-503.
[12]Ines A V, Mohanty B P. 2008. Near-surface soil moisture assimilation for quantifying effective soil hydraulic properties using genetic algorithm:1. Conceptual modeling[J]. Water Resour Res, 44(6):393-393.
[13]Jiang X, Li Y, Zhao X, et al. 2012. Characteristics of the summertime boundary layer and atmospheric vertical structure over the Sichuan Basin[J]. J Meteorol Soc Japan, 90(7):33-54.
[14]Kahan D S, Xue Y, Allen S J. 2006. The impact of vegetation and soil parameters in simulations of surface energyand water balance in the semi-arid sahel:A case study using SEBEX and HAPEX-Sahel data[J]. J Hydrol, 320(1/2):238-259.
[15]Kennedy J, Eberhart R. 1995. Particle swarm optimization[C] //IEEE International Conference on Neural Networks, Proceedings, IEEE, 4:1942-1948.
[16]Scheerlinck K, Pauwels V R N, Vernieuwe H, et al. 2009. Calibration of a water and energy balance model:Recursive parameter estimation versus particle swarm optimization[J]. Water Resour Res, 45(10):208-225.
[17]Schmitt M, Wanka R, et al. 2015, Particle swarm optimization almost surely finds local optima[J]. Theor Comput Sci, 561:57-72.
[18]Sellers P J. 1989. Calibrating the simple biosphere model for Amazonian tropical forest using field and remote sensing data. Part Ⅰ:Average calibration with field data[J]. J Appl Meteorol, 28(8):727-759.
[19]Veihe A, Quinton J. 2015. Sensitivity analysis of EUROSEM using Monte Carlo simulation I:hydrological, soil and vegetation parameters[J]. Hydrol Processes, 14(5):915-926.
[20]Xue Y, Zeng F J, Schlosser C A. 1996. SSiB and its sensitivity to soil properties-A case study using HAPEX-Mobilhy data[J]. Global Planet Chang, 13(1):183-194.
[21]Yapo P O, Gupta H V, Sorooshian S. 1998. Multi-objective global optimization for hydrologic models[J]. J Hydrol, 204(1):83-97.
[22]Fang Yunlong, Sun Shufen, Li Qian, et al. 2010. The optimization of parameters of land surface model in arid region and the simulation of land-atmosphere interaction[J]. Chinese J Atmos Sci, 34(2):290-306.<br/>房云龙, 孙菽芬, 李倩, 等. 2010.干旱区陆面过程模型参数优化和地气相互作用特征的模拟研究[J].大气科学, 34(2):290-306.
[23]Jia Li, Wang Jiemin, Hu Zeyong. 2000. The characteristics of roughness length for heat and its influence on determination of sensible heat flux in arid zone[J]. Plateau Meteor, 19(4):495-503.<br/>贾立, 王介民, 胡泽勇. 2000.干旱区热力学粗糙度特征及对感热估算的影响[J].高原气象, 19(4):495-503.
[24]Li Hongqi, Guo Weidong, Sun Guodong, et al. 2011. Using conditional nonlinear optimal pertubation method in parameter optimization of land surface processes model[J]. Acta Physica Sinica, 60(1):784-790.<br/>李红祺, 郭维栋, 孙国栋, 等. 2011.条件非线性最优扰动方法在陆面过程模式参数优化中的扩展应用初探[J].物理学报, 60(1):784-790.
[25]Li Deqin, Zhang Shuwen, Duan Yunxia, et al. 2013. Calibration of parameters in soil moisture equation with shuffled complex evolution algorithm[J]. Chinese J Atmosic Sci, 37(5):971-982.<br/>李得勤, 张述文, 段云霞, 等. 2013.SCE-UA算法优化土壤湿度方程中参数的性能研究[J].大气科学, 37(5):971-982.
[26]Wang Jiemin. 1999. Land surface process experiments and interaction study in China-From HEIFE to IMGRASS and GAME-TIBET/TIPEX[J]. Plateau Meteor, 18(3):280-294.<br/>王介民. 1999.陆面过程实验和地气相互作用研究-从HEIFE到IMGRASS和GAME-TIBET/TIPEX[J].高原气象, 18(3):280-294.
[27]Wang Yu, Hu Zeyong, Xun Xueyi, et al. 2013. Optimization and test of soil thermal conductivity parameterization schemes in northern Qinghai-Xizang plateau[J]. Plateau Meteor, 32(3):646-653. DOI:10. 7522/j. issn. 1000-0534. 2013. 00063.<br/>王愚, 胡泽勇, 荀学义, 等. 2013.藏北高原土壤热传导率参数化方案的优化和检验[J].高原气象, 32(3):646-653.
[28]Xiao Xia, Zuo Hongchao, Liu Huizhi, et al. 2010. Observational study of the surface energy closure in the semi-arid regions of Loess Plateau in late spring[J]. Journal of Glaciology and Geocryology, 32(1):70-77.<br/>肖霞, 左洪超, 刘辉志, 等. 2010.春末黄土高原半干旱区地表能量闭合的观测研究[J].冰川冻土, 32(1):70-77.
[29]Yang Qidong, Zuo Hongchao, Yang Yang, et al. 2012. On the effect of the near-surface layer energy closure degree on land surface process simulations[J]. Chinese J Geophys, 55(9):2876-2888.<br/>杨启东, 左洪超, 杨扬, 等. 2012.近地层能量闭合度对陆面过程模式影响[J].地球物理学报, 55(9):2876-2888.
[30]Zuo Hongchao, Hu Yinqiao. 1992. The bulk transfer coefficient over desert and gobi in Heihe region[J]. Plateau Meteor, 11(4):371-380.<br/>左洪超, 胡隐樵. 1992.黑河试验区沙漠和戈壁的总体输送系数[J].高原气象, 11(4):371-380.
[31]Zeng Qingcun, Lin Zhaohui. 2010. Recent progress on the earth system dynamical model and its numerical simulations[J], Adv Earth Sci, 25(1):1-6.<br/>曾庆存, 林朝晖. 2010.地球系统动力学模式和模拟研究进展[J].地球科学进展, 25(1):1-6.