In recent years, the drought situation in Beijing area is very serious, especially in the winter.How to effectively utilize the water resources in the air and carry out rain enhancement operation is important.Rain enhancement operation in winter is also likely to be used to remove fog and haze, and furthermore to improve air quality and visibility.Cloud models have been used in weather modification to formulate cloud-seeding hypotheses, assessments of the cloud-seeding potential or "seed ability".In this study, the numerical simulations of a snowfall case was carried out by using the two-moment explicit cloud scheme (nssl) of WRF model.The nssl scheme can predict the particle number concentration and mixing ratio of cloud water, rain, ice, snow, graupel and hail.For the snowfall case in Beijing on 19 March 2013, several seeding tests were designed to study the effects of different seeding time and seeding rate on cloud processes and precipitation amounts.The experimental results showed that all seeding tests could increase rainfall amount.When seeding with an amount of 1×107 kg-1 in cloud developing period, the rain enhancement effect was the best.The water vapor and supercooled cloud water mixing ratio in seeding area decreased after seeding, meanwhile the mixing ratios of ice and snow increased.The updraft and temperature of this area also increased.In 40 min after seeding, snow mixing ratios mainly grew through microphysical processes of deposition, the automatic conversion of ice to snow, snow accretion of cloud droplets, the collision between ice and snow.In 200 min after seeding, microphysical conversion processes of snow sources in the catalytic clouds were all higher than the natural clouds.Because of the consumption of supercooled cloud water in seeding clouds, the accretion process between cloud droplets and snow was very small.The snow mixing ratio mainly increased through terms of snow deposition and the interaction between snow and ice.The research results are helpful to understand the seeding effects on the macro and micro-processes of winter stratiform clouds, which will provide the basis for the rainfall enhancement field operations.
[1]Farley R D, Nguyen P, Orville H D. 1994. Numerical simulation of cloud seeding using a three-dimensional cloud model[J]. The Journal of Weather Modification, 26(1):113-124.
[2]Guo X L, Fu D H, Zheng G G. 2007. Modeling study on optimal convective cloud seeding in rain augmentation[J]. Korean Meteor Soc, 43(3):273-284.
[3]Guo X L, Zheng G G, Jin D Z. 2006. A numerical comparison study of cloud seeding by silver iodide and liquid carb on dioxide[J]. J Atmos Res, 79(3/4):186-226.
[4]Koenig L R, Murray F W. 1983. Theoretical experiments on cumulus dynamics[J]. J Atmos Sci, 40(5):1241-1256.
[5]Levy G, Cotton W R. 1984. A numerical investigation of mechanisms linking glaciation of the ice-phase to the boundary layer[J]. J Appl Meteor, 23(11):1505-1519.
[6]Meyers M P, DeMott P J, Cottion W R. 1992. New primary ice-nucleation parameterizations in an explicit cloud model[J]. J Appl Meteor, 31(7):708-721.
[7]Reisin T, Tzivion S, Levin Z. 1996. Seeding convective clouds with ice nuclei or hygroscopic particles:A numerical study using a model with detailed microphysics[J]. J App1 Meteor, 35(9):1416-1434.
[8]Ziegler C L. 1985. Retrival of thermal and microphysical variables in observed convective storms. Part I:Model development and preliminary testing[J]. J Atmos Sci, 42(14), 1487-1509.
[9]Fan Peng, Yu Xing, Lei Hengchi, et al. 2005. The application of a liquid carbon dioxide seeder[J]. J Appl Meteor Sci, 16 (5):685-692.<br/>樊鹏, 余兴, 雷恒池, 等. 2005.液态二氧化碳(LC)播撒装置应用研究[J].应用气象学报, 16(5):685-692.
[10]Fang Chungang, Guo Xueliang, Wang Panxing. 2009. The physical and precipitation response to AgI seeding from a mesoscale WRF-based seeding model[J]. Chinese J Atmos Sci, 33 (3):621-633.<br/>方春刚, 郭学良, 王盘兴. 2009.碘化银播撒对云和降水影响的中尺度数值模拟研究[J].大气科学, 33(3):621-633.
[11]Gao Qian, Wang Guanghe, Shi Yueqin. 2011. Nemerical simulation and seeding test on the strariform precipitation around Beijng[J]. Meteor Mon, 37(10):1241-1251.<br/>高茜, 王广河, 史月琴. 2011.华北层状云系人工降水个例数值研究[J].气象, 37(10):1241-1251.
[12]Gu Zhenchao. 1980. Cloud and fog precipitation physical basis[M]. Beijing:Science Press, 219.<br/>顾震潮. 1980.云雾降水物理基础[M].北京:科学出版社, 219.
[13]He Guanfang, Hu Zhijin. 1991. Numerical study on mechanism of artificial modification of cumulonimbus clouds[J]. Quart J Appl Meteor, 2 (1):32-39.<br/>何观芳, 胡志晋. 1991.人工影响积雨云机制的数值研究[J].应用气象学报, 2(1):32-39.
[14]He Hui, Gao Qian, Li Hongyu. 2013. Numerical simulation of stratiform precipitation enhancement in Beijing area and its mechanism[J]. Chinese J Atmos Sci, 37(4):905-922.<br/>何晖, 高茜, 李宏宇. 2013.北京层状云人工降水数值模拟试验和机理研究[J].大气科学, 37(4):905-922.
[15]Hong Yanchao. 1999. Study on mechanism of hail formation and hail suppression with seeding[J]. Acta Meteor Sinica, 57(1):30-44.<br/>洪延超. 1999.冰雹形成机制和催化防雹机制研究[J].气象学报, 57(1):30-44.
[16]Hong Yanchao. 1998. A 3-D hail cloud numerical seeding model[J]. Acta Meteor Sinica, 56(6):641-651.<br/>洪延超. 1998.三维冰雹云催化数值模式[J].气象学报, 56(6):641-651.
[17]Hu Zhijin. 2001. Discussion on mechanisms, conditions and methods of precipitation enhancement in stratiform clouds[J]. Quart J Appl Meteor, 12 (Suppl):10-13.<br/>胡志晋. 2001.层状云人工降水机制、条件和方法的探讨[J].应用气象学报, 12 (增刊):10-13.
[18]Li Hongyu, Ji Lei, Zhou Wei, et al. 2014. Effect evaluation of precipitation enhancement and hail suppression programs in Beijing Region[J]. Plateau Meteor, 33(4):1119-1130. DOI:10. 7522/j.issn. 1000-0534. 2013. 00027.<br/>李宏宇, 嵇磊, 周嵬, 等. 2014.北京地区人工增雨效果和防雹经济效益评估[J].高原气象, 33(4):1119-1130.
[19]Li Wei, Liu Yan, Yuan Ye, et al. 2013. Study on radar observation of stratiform cloud precipitation in Jilin province in spring[J]. Plateau Meteor, 32(5):1485-1491. DOI:10. 7522/j.issn. 1000-0534. 2012. 00138.<br/>李薇, 刘岩, 袁野, 等. 2013.吉林省春季层状云降水的雷达观测研究[J].高原气象, 32(5):1485-1491.
[20]Lou Xiaofeng, He Guanfang, Hu Zhijin, et al. 2013. Development of salt-seeding scheme in 3-D convective cloud model and seeding simulation[J]. Plateau Meteor, 32(2):491-500. DOI:10. 7522/j.issn. 1000-0534. 2012. 00047.<br/>楼小凤, 何观芳, 胡志晋, 等. 2013.三维对流云盐粉催化模式的发展和催化模拟实验[J].高原气象, 32(2):491-500.
[21]Mao Yuhua, Hu Zhijin. 1993. The 2D numerical study of rain-enhancement and hail suppression principles on convective clouds[J]. Acta Meteor Sinica, 51 (2):184-194.<br/>毛玉华, 胡志晋. 1993.强对流云人工降水和防雹原理的二维数值研究[J].气象学报, 51(2):184-194.
[22]Shi Yueqin, Lou Xiaofeng, Deng Xuejiao, et al. 2008. Seeding numerical experiments of cold front clouds in South China[J]. Chinese J Atmos Sci, 32(6):1256-1275.<br/>史月琴, 楼小凤, 邓雪娇, 等. 2008.华南冷锋云系的人工引晶催化数值试验[J].大气科学, 32(6):1256-1275.
[23]Sun Jing, Lou Xiaofeng, Hu Zhijin. 2009. Numerical simulation of snowfall in winter of Qilian Mountains. Part(I):Snowfall process and orographic influence[J]. Plateau Meteor, 28(3):485-495.<br/>孙晶, 楼小凤, 胡志晋. 2009.祁连山冬季降雪个例模拟分析(I):降雪过程和地形影响[J].高原气象, 28(3):485-495.
[24]Sun Jing, Lou Xiaofeng, Shi Yueqin, et al. 2009. Numerical simulation of snowfall in winter of Qilian Mountains. Part(Ⅱ):Seeding test[J]. Plateau Meteor, 28(3):496-506.<br/>孙晶, 楼小凤, 史月琴, 等. 2009.祁连山冬季降雪个例模拟分析(Ⅱ):人工催化试验[J].高原气象, 28(3):496-506.
[25]Sun Jing, Yang Wenxia, Zhou Yuquan. 2015. Numerical simulations of cloud structure and seed ability of a precipitating stratiform in Hebei[J]. Plateau Meteor, 34(6):1699-1710. DOI:10. 7522/j.issn. 1000-0534. 2014. 00086.<br/>孙晶, 杨文霞, 周毓荃. 2015.河北一次降水层状云系结构和增雨条件的模拟研究[J].高原气象, 34(6):1699-1710.
[26]Xiao Hui, Yang Huiling, Hong Yanchao, et al. 2012. Numerical simulation of the impacts of ice nucleus spectra on cloud seeding effects in convective storm clouds[J]. Cliatic Environ Res, 17(6):833-847.<br/>肖辉, 杨慧玲, 洪延超, 等. 2012.大气冰核谱分布对对流风暴云人工催化影响的数值模拟研究[J].气候与环境研究, 17(6):833-847.