A Study on the Consistency and Deviation Correction of the Radar Reflectivity Factor of Three Ground-based Radars in Southern Jiangsu

  • HAN Jing ,
  • CHU Zhigang ,
  • WANG Zhenhui ,
  • XU Fen ,
  • LI Nan ,
  • ZHU Yiqing ,
  • ZHANG Hanyun
Expand
  • Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, China Meteorological Administration Key Laboratory for Aerosol-Cloud-Precipitation, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;Jiangsu Institute of Meteorological Sciences, Nanjing 210009, Jiangsu, China

Received date: 2016-04-19

  Online published: 2017-12-28

Abstract

With the development of sophisticated meteorological equipment, weather radar is becoming an effective tool for monitoring and providing early warning of severe weather, especially small-scale disaster weather events. China new generation of weather Radar can be used for quantitative precipitation estimation (QPE) in large area, but the inconsistency between the data of adjacent radars may affect the networking application, especially in terms of Multi-Radar precipitation evaluations, data assimilation, cloud and precipitation physics research. In this paper, Precipitation Radar (PR) data, collected by the tropical rainfall measuring mission (TRMM) satellite, was used as a unified reference to analyze the consistency of 7 matched events of the PR and three Ground-based Radars (GRs) in southern Jiangsu (Nanjing, Changzhou and Nantong) during the period from June to July, 2010. Through the following seven-steps pretreatment:(1) PR and GR data match-up, (2) GR data azimuth adjustment, (3) GR data terrain blocking analysis, (4) GR data radial distance selection, (5) GR data vertical height selection, (6) Ku-adjusted, (7) NUBF analysis, the available best comparable data were used to establish a revisions relationship, the error correction and analysis was carried out. The results show that:(1) the reflectivity of Nanjing radar was about 3.5 dB smaller than that of Changzhou radar, while the reflectivity of Changzhou radar is about 0.9 dB smaller than that of Nantong rador, 3 km height of echo intensity mosaics obvious discontinuity; (2) after deviation correction, the difference of reflectivity between Nanjing and Changzhou, Changzhou and Nantong were reduced to 0.3 and 0.2 respectively, mosaics effect was significantly improved. The method may be applied to improve the quality of precipitation data products from the GR network and their quantitative application for the southern region. It can also be used for the further development of spaceborne PR and GR network data analyses, and provide an important reference value for the accuracy of multi-radar joint precipitation estimates and the application of radar networking mosaics.

Cite this article

HAN Jing , CHU Zhigang , WANG Zhenhui , XU Fen , LI Nan , ZHU Yiqing , ZHANG Hanyun . A Study on the Consistency and Deviation Correction of the Radar Reflectivity Factor of Three Ground-based Radars in Southern Jiangsu[J]. Plateau Meteorology, 2017 , 36(6) : 1665 -1673 . DOI: 10.7522/j.issn.1000-0534.2016.00137

References

[1]Bolsen M S, Chandrasekar V, 2000. Quantitative cross validation of space-based and ground-based radar observations[J]. J Appl Meteor, 39:2071-2079.
[2]Cheng M H, He H, Mao D, 2001. Study of 1998 heavy rainfall over the Yangtze river basin using TRMM data[J]. Adv Atmos Sci, 18:387-396.
[3]Gojara K, Chandrasekar V, 2002. Cross-calibration of ground and space radar[J]. IGARSS, 2823-2825.
[4]Jun-Dong P, Mi-Lim O, Kenneth R M, 2010. Comparisons of rain rate and reflectivity between TRMM precipitation radar and gosan S-band radar[J]. IGARSS, 4698-4700
[5]Kozu T, Kawanishi T, Kuroiwa H, et al, 2001. Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite[J]. IEEE Trans Geosci Remote Sens, 39(1):102-117.
[6]Liao L, Meneghini R, Iguchi T, 2001. Comparisons of rain rate and reflectivity factor derived from the TRMM Precipitation Radar and the WSR-88D over the Melbourne, Florida, site[J]. J Atmos Oceanic Technol, 18:1959-1974.
[7]Liao L, Meneghini R, 2009a. Changes in the TRMM version-5 and version-6 precipitation radar products due to orbit boost[J]. J Meteorol Soc Japan, 87A:93-107.
[8]Liao L, Meneghini R, 2009b. Validation of TRMM precipitation radar through comparison of its multi-year measurements to ground-based radar[J]. J Appl Meteor Climatol, 48:804-817.
[9]Park S, Jung S H, Lee G W, 2015. Cross validation of TRMM PR reflectivity profiles using 3D reflectivity composite from the ground-based radar network over the Korean Peninsula[J]. J Hydrometeorology, 16(2):668-687.
[10]Schumacher C, Houze A R, 2000. Comparison of radar data from the TRMM satellite and Kwajalein ocean validation site[J]. J Appl Meteor, 39:2151-2164.
[11]Schwaller M R, Morris K R, 2011. A ground validation network for the global precipitation measurement mission[J]. J Atmos Ocean Technol, 28(3):301-319.
[12]Smith A J, Krajewski W F, 1996. Estimation of the mean field bias of radar rainfall estimates[J]. J Appl Meteor, 30:397-412.
[13]Viltard N, Kunmmerow C, Olson B, 1999. Combined use of the tropical rainfall measuring mission precipitation radar and microwave imager to infer drop size distribution characteristics[C]//Proceedings of 29the international conference on radar meteorology, Montreal Canda, 640-642.
[14]Wolff D B, Marks D A, Amitai E, et al, 2005. Ground Validation for the Tropical Rainfall Measuring Mission (TRMM)[J]. J Atmos Oceanic Technol, 22(4):365-380.
[15]Dou X K, Liu W S, Amayenc P, et al. 2000. Impacts of nonuniform beam filling on spaceborne rain radar algorithms[J]. Chinese J Atmos Sci, 24(4), 568-576.<br/>窦贤康, 刘万栓, Amayenc P, 等, 2000.不均匀性束内充塞效应对星载测雨雷达反演算法的影响[J].大气科学, 568-576.
[16]Gou Y B, Liu L P, Li R Y, et al, 2015. Radar partial shielding region identification algorithm based on the probability characteristics of radar echoes[J]. Plateau Meteor, 34(2):556-567. DOI:10. 7522/j.issn. 1000-0534. 2013. 00192.<br/>勾亚彬, 刘黎平, 李瑞义, 等, 2015.基于雷达回波概率特征的雷达部分遮挡区域识别算法[J].高原气象, 34(2):556-567.
[17]He H Z, Cheng M H, Zhou K J, et al, 2002. Comparison of data and product obtained by TRMM/PR and Hong Kong radar[J]. Meteor Mon, 28, 32-36.<br/>何会中, 程明虎, 周康军, 等, 2002. TRMM/PR与香港雷达资料对比分析[J].气象, 28:32-36.
[18]He H Z, Cui Z H, Cheng M H, et al, 2004. TRMM satellite and application of its products[J]. Meteor Sci Technol, 32, 13-18.<br/>何会中, 崔哲虎, 程明虎, 等, 2004. TRMM卫星及其数据产品应用[J].气象科技, 32:13-18.
[19]Liu C L, Wang Z H, 1997. A rainfall measuring program with radar riding on satellites will soon be carried out[J]. World Sci-Tech R &amp; D, 19(5):93-94.<br/>刘春雷, 王振会, 1997.即将实现的星载雷达测雨计划-TRMM项目简介[J].世界科技研究与发展, 19(5):93-94.
[20]Liu L P, Zhang P Y, Liang H H, et al, 2003. Error estimation in wind fields derived from dual-doppler radar and data quality control[J]. J Appl Meteor Sci, 14(1), 17-29.<br/>刘黎平, 张沛源, 梁海河, 等, 2003.双多普勒雷达风场反演误差和资料的质量控制[J].应用气象学报, 14:17-29.
[21]Liu Z C, Li B, Zhai W Q, 2002. The new generation of weather radar system environment and operation management[M]. Beijing:China Meteorological Press, 102-104.<br/>刘志澄, 李柏, 翟武全, 2002.新一代天气雷达系统环境及运行管理[M], 北京:气象出版社, 102-104.
[22]Shi R, Cheng M H, Cui Z H, et al, 2006. Quality analysis of echo intensities from the doppler weather radars in the Changjiang River Valley[J]. Meteor Mon, 30:27-31.<br/>史锐, 程明虎, 崔哲虎, 等, 2006.长江流域多普勒雷达回波强度资料对比分析[J].气象, 30:27-31.
[23]Wang C G, Ge W Z, Wei M, 2003. A comparative study of data from TRMM precipitation radar and Fuyang radar[J]. J Remote Sens, 7(4), 332-336.<br/>王成刚, 葛文中, 魏鸣, 2003. TRMM PR雷达与阜阳雷达降水资料的对比研究[J].遥感学报, 7:332-336.
[24]Wang D, Wang G L, Liu L P, et al, 2014. Comparisons analysis on short-term precipitation between the eadar-based extrapolation and the meso-scale numerical model weather prediction[J]. Plateau Meteor, 33(3):811-822. DOI:10. 7522/j.issn. 1000-0534. 2013. 00038.<br/>王丹, 王改利, 刘黎平, 等, 2014.基于雷达回波外推和中尺度模式预报的短时降水对比分析[J].高原气象, 33(3):811-822.
[25]Wang Z H, Li S Y, Dai J H, et al, 2015. Comparative case study on the observations between the space-borne radar and ground-based radar[J]. Plateau Meteor, 34(3), 804-814. DOI:10. 7522/j.issn. 1000-0534. 2014. 00031.<br/>王振会, 李圣殷, 戴建华, 等, 2015.星载雷达与地基雷达数据的个例对比分析[J].高原气象, 34(3):804-814.
[26]Wang Z H, Zhang P C, 2000. Relationship between attenuation of microwaves by polydisperse small spheroid particles and their radar reflectivity factor[J]. Acta Meteor Sinica, 1:123-128.<br/>王振会, 张培昌, 2000.小旋转椭球粒子群的微波衰减系数与雷达反射率因子之间的关系[J].气象学报, 1:123-128.
[27]Wu T, Wan Y F, Wo W F, et al, 2013. Design and application of radar reflectivity quality control algorithm in SWAN[J]. Meteor Sci Technol, 41(5):809-817<br/>吴涛, 万玉发, 沃伟锋, 等, 2013. SWAN系统中雷达反射率因子质量控制算法及其应用[J].气象科技, 41(5):809-817.
[28]Xu X F, 2003. Construction, techniques and application of new generation doppler weather radar network in China[J]. Engineering Science, 5(6):7-14.<br/>许小峰, 2003.中国新一代多普勒天气雷达网的建设与技术应用[J].中国工程科学, 5(6):7-14.
[29]Yang Y, Zhu K Y, Zhang J, et al, 2015. Study on Doppler radar data assimilation over complex terrain[J]. Plateau Meteor, 34(5):1495-1501. DOI:10. 7522/j.issn. 1000-0534. 2014. 00059.<br/>杨银, 朱克云, 张杰, 等, 2015.复杂地形下多普勒雷达资料同化的研究[J].高原气象, 34(5):1495-1501.
[30]Yu X D, Yao X P, Xiong T N, et al, 2006. The principle and application of Doppler weather radar[M]. Beijing:China Meteorological Press, 1-14.<br/>俞小鼎, 姚秀萍, 熊廷南, 等, 2006.多普勒天气雷达原理与业务应用[M].北京:气象出版社, 1-14.
[31]Zhao S H, Qin X, Li S B, et al, 2012. Application of CINRAD weather radar common products on weather modification in China[J]. Adv Earth Sci, 27(6), 694-702.<br/>赵姝慧, 秦鑫, 李帅彬, 等, 2012.新一代天气雷达常用产品在我国人工影响天气工作中的应用[J].地球科学进展, 27(6):694-702.
Outlines

/