Investigation on Norm of Haze Identification based on Hourly Auto-monitored Visibility

  • SHI Chun'e ,
  • ZHANG Hao ,
  • MA Jinghui ,
  • WU Biwen ,
  • WANG Xing ,
  • CHEN Rulong ,
  • YANG Yuanjian
Expand
  • Anhui Institute of Meteorological Sciences, Key Laboratory for Atmospheric Sciences and Remote Sensing of Anhui Province, Hefei 230031, Anhui, China;Yangtze River Delta Center for Environmental Meteorology Prediction and Warning, Shanghai 200030, China;Hefei Meteorological Bureau, Hefei 230041, Anhui, China

Received date: 2016-09-12

  Online published: 2017-12-28

Abstract

At present, auto-monitored visibility was adopted by more and more meteorological stations in China.At the same time, some weather phenomena were not recorded by observer any longer.It is necessary and urgent to set up a reasonable norm of haze identification using auto-monitored meteorological parameters, so that not only it contains information of air quality, maintains the continuity of annual haze days, but also the method is easy to put into application.In this paper, through summarizing of norms and some references related to haze identification, basic parameters were chosen for haze diagnosis.Based on analysis of relationship between PM2.5 concentration and relative humidity using hourly meteorological data at observatories of six cities in Anhui province, together with hourly PM2.5 concentrations published by environment department, four initial schemes were proposed, that are, auto-monitored visibility lower than 5 km, adopting critical relative humidity (RHc) as 90% (or 95%), considering PM2.5 concentration or not.Then, hourly and daily hazes of 2015 were re-diagnosed for those cities based on those schemes.Some rules were considered in the investigation of objective standards for haze identification, e.g., haze being indicator of air pollution, maintaining the continuity of annual haze days.The results indicated that hourly haze can be identified as "excepting hourly rainfall over 0.1mm, the auto-monitored visibility no more than 5 km with the RH lower than 90% (RHc=90%), neglecting PM2.5 concentration".A day with consecutive 6 h haze can be defined as a haze day.The annual haze days obtained by this method were reasonable and a good indicator of air quality.

Cite this article

SHI Chun'e , ZHANG Hao , MA Jinghui , WU Biwen , WANG Xing , CHEN Rulong , YANG Yuanjian . Investigation on Norm of Haze Identification based on Hourly Auto-monitored Visibility[J]. Plateau Meteorology, 2017 , 36(6) : 1693 -1702 . DOI: 10.7522/j.issn.1000-0534.2016.00130

References

[1]Deng X L, Shi C E, Yao C, et al, 2015.Research of reconstruction and characteristics of hazes in Anhui[J].Plateau Meteor, 34(4):1158-1166.DOI:10.7522/j.issn.1000-0534.2014.00007.<br/>邓学良, 石春娥, 姚晨, 等, 2015.安徽霾日重建和时空特征分析[J].高原气象, 34(4):1158-1166.
[2]Ding Y H, Liu Y J, 2014.Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity[J].Sci China:Earth Sciences, 44(1):37-48.DOI:10.1007/s11430-013-4792-1.<br/>丁一汇, 柳艳菊, 2014.近50年我国雾和霾的长期变化特征及其与大气湿度的关系[J].中国科学(地球科学), 44(1):37-48.
[3]Lü M Y, Liu H N, Zhang N, et al, 2011.Numerical simulation of impact factors of urban haze in Nanjing area[J].Plateau Meteor, 30(4):929-941.<br/>吕梦瑶, 刘红年, 张宁, 等, 2011.南京市灰霾影响因子的数值模拟[J].高原气象, 30(4):929-941.
[4]Ma N, Zhao C S, Chen J, et al, 2015.A novel method for distinguishing fog and haze based on PM<sub>2.5</sub>, visibility, and relative humidity[J].Sci China:Earth Sciences, 45:227-235.DOI:10.1007/s11430-014-4885-5.<br/>马楠, 赵春生, 陈静, 等, 2015.基于实测PM<sub>2.5</sub>、能见度和相对湿度分辨雾霾的新方法[J].中国科学(地球科学), 45:227-235.
[5]Mao J J, Mo Y Q, Zhang X F, et al, 2016.Comparison and analysis of automatically-observed and manually-observed relative humidity[J].J Appl Meteor Sci, 27(3):370-379.DOI:10.11898/1001-7313.20160312.<br/>茆佳佳, 莫月琴, 张雪芬, 等, 2016.自动观测与人工观测相对湿度比对分析[J].应用气象学报, 27(3):370-379.
[6]Ren Z H, Yu Y, Han R, et al, 2015.Impacts and corrections of automatically-observed visibility on daily haze record[C].Conference on decision-making meteorological services, Xi'an, China.<br/>任芝花, 余予, 韩瑞, 等, 2015. 自动观测对雾霾现象日数据记录的影响与订正[C]. 全国决策气象服务业务技术交流会, 西安.
[7]Shi C E, Deng X L, Yang Y J, et al, 2014.Analyses on the causes of the persistent haze in Anhui Province in January 2013[J].Climat Environ Res, 19 (2):227-236.DOI:10.3878/j.issn.1006-9585.<br/>石春娥, 邓学良, 杨元建, 等, 2014.2013年1月安徽持续性霾天气成因分析[J].气候与环境研究, 19(2):227-236.
[8]石春娥, 邓学良, 朱彬, 等, 2016a.合肥市不同天气条件下大气气溶胶粒子理化特征分析[J].气象学报, 74(1):149-163.
[9]Shi C E, Deng X L, Zhu B, et al, 2016.Physical and chemical characteristics of atmospheric aerosol under the different weather conditions in Hefei[J].Acta Meteor Sinica, 74(1):149-163.DOI:10.11676/qxxb2016.003.
[10]石春娥, 王喜全, 李元妮, 等, 2016b.1980-2013年安徽霾天气变化趋势及其可能成因[J].大气科学, 40(2):357-370.
[11]Shi C E, Wang X Q, Li Y N, et al, 2016.The trend of haze in Anhui province from 1980 to 2013 and the possible reasons[J].Atmos Sci, 40(2):357-370.DOI:10.3878/j.issn.1006-9895.1504.14319.
[12]石春娥, 张浩, 杨元建, 2016c.能见度观测方式改变对安徽省霾日数分布的影响分析[J].气象与减灾, 1:1-4.
[13]Shi C E, Zhang H, Yang Y J, 2016.Impacts of changing eye-observed to automatically-observed visibility on haze distribution in Anhui[J].Meteor Disaster Reduction, 1:1-4.
[14]Shi C E, Zhang H, Gong Z Q, et al, 2017.Characteristics of severe PM<sub>2.5</sub> pollution in Hefei during 2013-2015[J].Acta Meteor Sinica, 75(4):632-644.DOI:10.11676/qxxb2017.037.<br/>石春娥, 张浩, 弓中强, 等, 2017.2013-2015年合肥市PM<sub>2.5</sub>重污染特征研究[J].气象学报, 75(4):632-644.
[15]Wang X Q, Yang T, Wang Z F, 2011.Impacts of dust-haze episode from one air pollution control region to the other-one case study[J].Climatic Environ Res, 16(6):690-696.<br/>王喜全, 杨婷, 王自发, 2011.灰霾污染的跨控制区影响-一次京津冀与东北地区灰霾污染个案分析[J].气候与环境研究, 16(6):690-696.
[16]Wang Z F, Li J, Wang Z, et al, 2014.Modeling study of regional severe hazes over Mid-Eastern China in January 2013 and its implications on pollution prevention and control[J].Sci China:Earth Sciences, 44(1):3-14.DOI:10.1007/s11430-013-4793-0.<br/>王自发, 李杰, 王哲, 等, 2014.2013年1月我国中东部强霾污染的数值模拟和防空对策[J].中国科学(地球科学), 44(1):3-14.
[17]Wu D, Chen H Z, Wu M, et al, 2014.Comparison of three statistical methods on calculating haze days-taking areas around the capital for example[J].China Environ Sci, 34(3):545-554.<br/>吴兑, 陈慧忠, 吴蒙, 等, 2014.三种霾日统计方法的比较分析-以环首都圈京津冀晋为例[J].中国环境科学, 34(3):545-554.
[18]Wu D, Liao G L, Deng X J, et al, 2008.Transport condition of surface layer under haze weather over the Pearl River Delta[J].J Appl Meteor Sci, 19(1):1-9.<br/>吴兑, 廖国莲, 邓雪娇, 等, 2008.珠江三角洲霾天气的近地层输送条件研究[J].应用气象学报, 19(1):1-9.
[19]Wu D, Wu X J, Li F, et al, 2010.Temporal and spatial variation of haze during 1951-2005 in Chinese mainland[J].Acta Meteor Sinica, 68(5):680-688.<br/>吴兑, 吴晓京, 李菲, 等, 2010.1951-2005年中国大陆霾的时空变化[J].气象学报, 68(5):680-688.
[20]Wu P, Ding Y H, Liu Y J, et al, 2016.Influence of East Asia winter monsoon and atmospheric humidity on the winter haze frequency over East-Central China[J].Acta Meteor Sinica, 74(3):352-366.Doi:10.11676/qxxb2016.029.<br/>吴萍, 丁一汇, 柳艳菊, 等, 2016.中国中东部冬季霾日的形成与东亚冬季风和大气湿度的关系[J].气象学报, 74(3):352-366.
[21]Yang J, Niu Z Q, Shi C E, et al, 2010.Microphysics of atmospheric aerosols during winter haze/fog events in Nanjing[J].Environ Sci, 31(7):1425-1431.<br/>杨军, 牛忠清, 石春娥, 等, 2010.南京冬季雾霾过程中气溶胶粒子的微物理特征[J].环境科学, 2010, 31(7):1425-1431.
[22]China Meteorological Administration, 2003.Specifications for surface meteorological observation Part 4:Observation of weather phenomenon[M].Beijing:China Meteorological Press, 23.<br/>中国气象局, 2003.地面气象观测规范第4部分:天气现象观测[M].北京:气象出版社, 23.
[23]China Meteorological Administration, 2007.QX/T 48-2007 Specifications for surface meteorological observation, Part 4:Observation of weather phenomenon[S].Beijing:China Meteorological Press, 10.<br/>中国气象局, 2007. QX/T 48-2007地面气象观测规范第4部分: 天气现象观测[S]. 北京: 气象出版社, 10.
[24]China Meteorological Administration, 2010.QX/T 113-2010 Observation and forecasting levels of haze[S].Beijing:China Meteorological Press, 8.<br/>中国气象局, 2010. 霾的观测和预报等级(QX/T113-2010)[S]. 北京: 气象出版社, 8.
Outlines

/