Spatial-temporal Changes of the Near-surface Soil Freeze-thaw Status over the Qinghai-Tibetan Plateau

  • YANG Shuhua ,
  • WU Tonghua ,
  • LI Ren ,
  • ZHU Xiaofan ,
  • WANG Weihua ,
  • YU Wenjun ,
  • QIN Yanhui ,
  • HAO Junming
Expand
  • Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, State Key Laboratory of Cryospheric Sciences, Lanzhou 730000, Gansu, China;University of Chinese Academy of Science, Beijing 100049, China

Received date: 2017-04-24

  Online published: 2018-02-28

Abstract

Based on the surface soil daily minimum temperature and air temperature datas from 87 meteorological stations over the Qinghai-Tibetan Plateau (QTP), the trends of the near-surface freeze-thaw status and its correlation with air temperature, altitude and latitude was analyzed by using the linear regression method and correlation method.Using Mann-Kendall method to test the abrupt change and discuss the spatial variation characteristics of the near-surface soil freeze-thaw status over QTP.The results show that the near-surface soil freeze-thaw status changed significantly on QTP in recent 36 years.The first date of the near-surface freeze was delayed by about 26 days, or at a rate of 0.72 d·a-1, and the late date of the near-surface freeze was advanced by about 14 days, or at a rate of 0.40 d·a-1.The number of duration days and freeze days of the near-surface freeze decreased about 41 and 33 days respectively, and the rate of change was 1.13 d·a-1 and 0.93 d·a-1, respectively.The trend of the near-surface soil freeze-thaw status was same overall QTP, while in some areas was slight differences.The central and eastern region of QTP, the first date of the near-surface freeze was earlier and the last date was later than other regions.However, there was a contrary variation in the southeast region.It may be the lower elevation of the stations and it had the higher air temperature all years.For the change rate of the near-surface soil freeze-thaw status, the eastern part of QTP changed the fastest, the western was moderate and the stations that changed slower scattered in central and southern regions.The temperature had a significant effect on the near-surface soil freeze-thaw status, but air temperature had a certain lag effect on soil freeze-thaw cycle.And the near-surface soil freeze-thaw status was great significantly correlated with altitude.With decreasing elevation, the first days of the near-surface soil freeze was delayed and the late days was advanced, and the numbers of duration days and freeze days of the near-surface soil freeze were significantly decreased.

Cite this article

YANG Shuhua , WU Tonghua , LI Ren , ZHU Xiaofan , WANG Weihua , YU Wenjun , QIN Yanhui , HAO Junming . Spatial-temporal Changes of the Near-surface Soil Freeze-thaw Status over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018 , 37(1) : 43 -53 . DOI: 10.7522/j.issn.1000-0534.2017.00043

References

[1]An W L, Hou S G, Zhang W B, et al, 2016.Possible recent warming hiatus on the northwestern Tibetan Plateau derived from ice core records[J].Scientific Reports, 6:32813.DOI:10.1038/srep32813.
[2]Anandhi A, Perumal S, Gowda P H, et al, 2013.Long-term spatial and temporal trends in frost indices in Kansas, USA[J].Climatic Change, 120(1):169-181.
[3]Cheng G D, Wu T H, 2007.Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J].Journal of Geophysical Research Earth Surface, 112:F02S03.DOI:10.1029/2006JF000631.
[4]Duan A M, Xiao Z X, 2015.Does the climate warming hiatus exist over the Tibetan Plateau?[J].Scientific Reports, 5:13711.DOI:10.1038/srep13711.
[5]Easterling D R, Wehner M F, 2009.Is the climate warming or cooling?[J].Geophys Res Lett, 36(8):262-275.
[6]Frauenfeld O W, Zhang T, Mccreight J L, et al, 2007.Northern Hemisphere freezing/thawing index variations over the twentieth century[J].Int J Climatol, 27(1):47-63.
[7]Goossens C, Berger A, 1987.How to recognize an abrupt climatic change?[J].Nato Asi Series, 216:31-45.
[8]Grogan P, Michelsen A, Ambus P, et al, 2004.Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic health tundra mesocosms[J].Soil Biology & Biochemistry, 36(4):641-654.
[9]Guo D L, Wang H, 2014.Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010[J].Chinese Sci Bull, 59(20):2439-2448.
[10]Henry H A L, 2013. Soil freezing dynamics in a changing climate: Implications for agriculture[M]//plant and microbe adaptations to cold in a changing world, 17-27.
[11]Jin R, Li X, Tao C, 2009.A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature[J].Remote Sensing of Environment, 113(12):2651-2660.
[12]Knox J C, 2001.Agricultural influence on landscape sensitivity in the Upper Mississippi River Valley[J].Catena, 42(2-4):193-224.
[13]Kuang X X, Jiao J J, 2016.Review on climate change on the Tibetan Plateau during the last half century[J].J Geophys Res Atmos, 121(8):1-29.
[14]Larsen K S, Jonasson S, Michelsen A, 2002.Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types[J].Applied Soil Ecology, 21(3):187-195.
[15]Li X, Jin R, Pan X, et al, 2012.Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau[J].International Journal of Applied Earth Observation & Geoinformation, 17(1):33-42.
[16]Mann H B, 1945.Nonparametric test against trend[J].Econometrica, 13(3):245-259.
[17]Niu G Y, Yang Z L, 2006.Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J].Journal of Hydrometeorology, 7(5):937-952.
[18]Peng X Q, Frauenfeld O W, Cao B, et al, 2016.Response of changes in seasonal soil freeze/thaw state to climate change from 1950 to 2010 across China[J].Journal of Geophysical Research Earth Surface, 121:1984-2000.
[19]Qiu J, 2008.China:The third pole[J].Nature, 454(24):393-369.
[20]Sinha T, Cherkauer K A, 2008.Time series analysis of soil freeze and thaw processes in Indiana[J].Journal of Hydrometeorology, 9(5):936-950.
[21]Urakawa R, Shibata H, Kuroiwa M, et al, 2014.Effects of freeze-thaw cycles resulting from winter climate change on soil nitrogen cycling in ten temperate forest ecosystems throughout the Japanese archipelago[J].Soil Biology & Biochemistry, 74:82-94.
[22]Wang K, Zhang T, Zhong X H, et al, 2015.Changes in the timing and duration of the near-surface soil freeze/thaw status from 1956 to 2006 across China[J].The Cryosphere, 9(3):1321-1331.
[23]Wu Q B, Hou Y D, Yun H B, et al, 2015.Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China[J].Global & Planetary Change, 124:149-155.
[24]Yu K, Xie S P, 2013.Recent global-warming hiatus tied to equatorial Pacific surface cooling[J].Nature, 501(7467):403-407.
[25]Zhang T J, Armstrong R L, Smith J G, et al, 2003.Investigation of the near-surface soil freeze-thaw cycle in the contiguous United States:Algorithm development and validation[J].J Geophys Res:Atmos.108(D22).Doi:10.1029/2003JD003530.
[26]Zhang T J, 2005.Historical overview of permafrost studies in China[J].Physical Geography, 26(4):279-298.
[27]Zou D, Zhao L, Yu S, et al, 2017.A new map of permafrost distribution on the Tibetan Plateau[J].The Cryosphere, 11:2527-2542.
[28]Ge J, Yu Y, Li Z C, et al, 2016.Impacts of freeze/thaw processes on land surface energy fluxes in the permafrost region of Qinghai-Xizang Plateau[J].Plateau Meteor, 35(3):608-620.DOI:10.7522/j.issn.1000-0534.2016.00032.<br/>葛骏, 余晔, 李振朝, 等, 2016.青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J].高原气象, 35(3):608-620.
[29]Hu G J, Zhao L, Li R, et al, 2014.Characteristics of hydro-thermal transfer during freezing and thawing period in permafrost regions[J].Soils, 46(2):355-360.<br/>胡国杰, 赵林, 李韧, 等, 2014.青藏高原多年冻土区土壤冻融期间水热运移特征分析[J].土壤, 46(2):355-360.
[30]Li R, Zhao L, Ding Y J, et al, 2012.Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region[J].Chinese Science Bulletin, 57(30):2864-2871.<br/>李韧, 赵林, 丁永建, 等, 2012.青藏公路沿线多年冻土区活动层动态变化及区域差异特征[J].科学通报, 57(30):2864-2871.
[31]Li S X, Nan Z T, Zhao L, 2002.Impact of soil freezing and thawing process on thermal exchange between atmosphere and ground surface[J].Journal of Glaciolgy &amp; Geocryology, 24(5):506-511.<br/>李述训, 南卓铜, 赵林, 2002.冻融作用对地气系统能量交换的影响分析[J].冰川冻土, 24(5):506-511.
[32]Luo S Q, Lü S H, Zhang Y, et al, 2008.Simulation analysis on land surface process of BJ site of central Tibetan Plateau Using CoLM[J].Plateau Meteor, 27(2):259-271.<br/>罗斯琼, 吕世华, 张宇, 等, 2008.CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J].高原气象, 27(2):259-271.
[33]Lü S N, Li D L, Wen J, et al, 2010.Analysis on periodic variations and abrupt change of air temperature over Qinghai-Xizang Plateau under global warming[J].Plateau Meteor, 29(6):1378-1385.<br/>吕少宁, 李栋梁, 文军, 等, 2010.全球变暖背景下青藏高原气温周期变化与突变分析[J].高原气象, 29(6):1378-1385.
[34]Niu X T, Zhang J S, 2012.Correlation analysis and statistical characteristics of global earthquake and temperature[J].Journal of Lanzhou Jiaotong University, 31(3):108-111.<br/>牛晓宁, 张济世, 2012.全球地震活动与气温的相关性分析及统计特征[J].兰州交通大学学报, 31(3):108-111.
[35]Pan B T, Li J J, 1996.Qinghai-Tibetan Plateau:A driver and amplifier of the global climatic change[J].Journal of Lanzhou University(Natural Sciences), 32(1):108-115.<br/>潘保田, 李吉均, 1996.青藏高原:全球气候变化的驱动机与放大器——Ⅲ.青藏高原隆起对气候变化的影响[J].兰州大学学报(自科版), 32(1):108-115.
[36]Qiu G Q, Cheng G D, 1995.Permafrost in China:Past and present[J].Quaternary Sciences, 15(1):13-22.<br/>邱国庆, 程国栋, 1995.中国的多年冻土——过去与现在[J].第四纪研究, 15(1):13-22.
[37]Wang C H, Dong W J, Wei Z G, 2002.The development of study on the soil freezing-thaw process in land surface model[J].Advance in Earth Sciences, 17(1), 44-52.<br/>王澄海, 董文杰, 韦志刚, 2002.陆面模式中土壤冻融过程参数化研究进展[J].地球科学进展, 17(1):44-52.
[38]Wu T H, 2005. A study on response of permafrost to global climate change in Qinghai-Tibetan Plateau[D]. Ph. D. thesis. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, in China.<br/>吴通华, 2005. 青藏高原多年冻土对全球气候变化的响应研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所.
[39]Xie Z P, Hu Z Y, Liu H L, et al, 2017.Evaluation of the surface energy exchange simulations of land surface model CLM4.5 in alpine meadow over the Qinghai-Xizang Plateau[J].Plateau Meteor, 36(1):1-12.DOI:10.7522/j.issn.1000-0534.2016.00012.<br/>谢志鹏, 胡泽勇, 刘火霖, 等, 2017.陆面模式CLM4.5对青藏高原高寒草甸地表能量交换模拟性能的评估[J].高原气象, 36(1):1-12.
[40]Xu W C, Wang W, Ma J S, et al, 2004.The characteristics, causes of formation and climatic impact of the 19971998 El Ni(n)o event[J].Donghai Marine Science, 22(3):1-8.<br/>许武成, 王文, 马劲松, 等, 2004.1997——1998年厄尔尼诺事件的特征、成因及对气候的影响[J].海洋学研究, 22(3):1-8.
[41]Yang M X, Yao T D, Hirose N, et al, 2006.Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau[J].Chinese Sci Bull, 51(16):1974-1976.<br/>杨梅学, 姚檀栋, Hirose N, 等, 2006.青藏高原表层土壤的日冻融循环[J].科学通报, 51(16):1974-1976.
[42]Yang M X, Yao T D, Gou X H, 2000.Soil melting freezing processes and water heat distribution feature along the Qinghai-Xizang Highway[J].Progress in Natural Science, 10(5):443-450.<br/>杨梅学, 姚檀栋, 勾晓华, 2000.青藏公路沿线土壤的冻融过程及水热分布特征[J].自然科学进展, 10(5):443-450.
[43]Zhang T J, Jin R, Gao F, 2009.Overview of the satellite remote sensing of frozen ground:visible-thermal Infrared and radar sensor[J].Advances in Earth Science, 24(9):963-972.<br/>张廷军, 晋锐, 高峰, 2009.冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法[J].地球科学进展, 24(9):963-972.
[44]Zhang Y S, Ma Y Z, Zhang Y L, et al, 2015.Hillslope patterns in thaw-freeze cycle and hydrothermal regimes on Tibetan Plateau[J].Chinese Science Bulletin, 60(7):664-673.<br/>张寅生, 马颖钊, 张艳林, 等, 2015.青藏高原坡面尺度冻融循环与水热条件空间分布[J].科学通报, 60(7):664-673.
[45]Zhao L, Cheng G D, Li S X, et al, 2000.Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau[J].Chinese Sci Bull, 45(11):1205-1211.<br/>赵林, 程国栋, 李述训, 等, 2000.青藏高原五道梁附近多年冻土活动层冻结和融化过程[J].科学通报, 45(11):1205-1211.
Outlines

/