Research of the Vertical Structure of Summer Convective Precipiation Cloud over the Qinghai-Tibetan Plateau by C-FMCW Radar

  • RUAN Yue ,
  • RUAN Zheng ,
  • WEI Ming ,
  • GE Runsheng ,
  • LI Feng ,
  • JIN Long
Expand
  • Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;Fujian Weather Observatory, Fuzhou 350001, Fujian, China;Meteorological technical equipment center of Hebei Province, Shijiazhuang 050021, Hebei, China

Received date: 2016-09-07

  Online published: 2018-02-28

Abstract

During the Third Qinghai-Tibetan Plateau Atmospheric Scientific Experiment Ⅲ, the precipitation clouds in Nagqu, Tibet was continuously detected with C-FMCW radar from July to August 2014.The dataset gained was then analyzed, as a consequences of which, 37 convective clouds is obtained; further, 13 characteristic parameters were extracted, including Convective Index (difference of updafts and downdrafts, CI), the maximum cloud top(Hctop), the maximum height of 35 dBZ (Hz35), the maximum reflectivity (Zmax), etc.The cluster analysis method was applied for categorization of all these characteristic parameter in terms of deep and shallow convective cloud.From which, it is found that the parameters of Hctop and Hz35 are most favorable for the classification, with a similarity of more than 0.8 to that of CI.In addition, the parameters of CI, Hz35 and Hctop, which are in possession of relatively excellent consistency, were employed for a cluster analysis, then the 37 clouds were identified as 9 deep convective precipitation clouds and 28 shallow convective precipitation clouds.For the deep convective clouds, the maximum of CI is up to 33 m·s-1, as well as maximum Hctop of 12.5 km and Hz35 of higher than 5 km(above ground level, hereinafter the same).While, for the shallow convective precipitation clouds, the average of CI and Hctop are 14 m·s-1and 2.5 km, respectively.In the deep convective clouds, a steady layer similar to the Bright Band often appeared at the height of about 0.8~1.5km, which is however not applicable to the shallow convective clouds.Based on the C-FMCW radar, it is believed that the horizontal distribution of the deep convective clouds was mainly manifested as organizing multi-monomer into convective precipitation system, and shallow convective clouds showed a distribution like individual scattering popcorn.The 9 deep convection clouds resulted in a accumulated ground rainfall of 82.7 mm, accounting for 28% of the whole rainfall of the very two months, and sometimes it was accompanied by hail.On the contrast, all 28 shallow convective clouds only generated an accumulation of ground rainfall of 28.7 mm, which is far less than that of the deep convection rainfall contribution.

Cite this article

RUAN Yue , RUAN Zheng , WEI Ming , GE Runsheng , LI Feng , JIN Long . Research of the Vertical Structure of Summer Convective Precipiation Cloud over the Qinghai-Tibetan Plateau by C-FMCW Radar[J]. Plateau Meteorology, 2018 , 37(1) : 93 -105 . DOI: 10.7522/j.issn.1000-0534.2017.00025

References

[1]Browning K A, Ludlam F H, 1962.Airflow in convective storms[J].Quart J Roy Meteor Soc, 88(376):117-135.
[2]Fu Y, Liu G, Wu G, et al, 2006.Tower mast of precipitation over the central Tibetan Plateau summer[J].Geophys Res Lett, 330(5):157-158.
[3]Giangrande S E, Collis S, Straka J, et al, 2013.A summary of convective-core vertical velocity properties using ARM UHF wind profilers in Oklahoma[J].J Appl Meteor & Climat, 52(10):2278-2295.
[4]Johnson S C, 1967.Hierarchical clustering schemes[J].Psychometrika, 32(3):241-254.
[5]Ai Y Z, Yang C R, Li R, 2015.Mesoscale characteristic analyses on severe convective weather process at Yuxi in Yunnan[J].Plateau Meteor, 34(5):1391-1401.DOI:10.7522/j.issn.1000-0534.2014.00068.<br/>艾永智, 杨传荣, 李蕊, 2015.玉溪一次强对流天气的中尺度特征分析[J].高原气象, 34(5):1391-1401.
[6]Zeng B, Chen Y, Li Z C, 2016.Characteristic of precursor environment of mesoscale convective system during summer in Central-Eastern China[J].Plateau Meteor, 35(2):460-468.DOI:10.7522/j.issn.1000-0534.2015.00003.<br/>曾波, 谌芸, 李泽椿, 2016.中国中东部地区夏季中尺度对流系统发生前环境场特征[J].高原气象, 35(2):460-468.
[7]Chen L, Zhou Y J, 2015.Different physical properties of summer precipitation clouds over Qinghai-Xizang Plateau and Sichuan Basin[J].Plateau Meteor, 34(3):621-632.DOI:10.7522/j.issn.1000-0534.2014.00036.<br/>陈玲, 周筠珺, 2015.青藏高原和四川盆地夏季降水云物理特性差异[J].高原气象, 34(3):621-632.
[8]Chen L X, Song Y K, Liu J P, et al, 1999.On the diurnal variation of convection over qinghai-xizang plateau during summer as revealed from meteorological satellite data[J].Acta Meteor Sinica, 57(5):549-560.<br/>陈隆勋, 宋玉宽, 刘骥平, 等, 1999.从气象卫星资料揭示的青藏高原夏季对流云系的日变化[J].气象学报, 57(5):549-560.
[9]Ding H, Niu S J, Zhang Z J, 2015.Measurements of mixed layer height and aerosol vertical profile using a micropulse lidar[J].Trans Atmos Sci, 38(1):85-92.<br/>丁辉, 牛生杰, 张泽娇, 2015.利用微脉冲激光雷达探测大气混合层高度和气溶胶垂直结构的初步研究[J].大气科学学报, 38(1):85-92.
[10]Ding Z Y, Wang Y J, Liu R X, 2016.Study about a process of MCC converting to MCV on Qinghai-Xizang Plateau[J].Plateau Meteor, 35(3):561-573.DOI:10.7522/j.issn.1000-0534.2016.00020.<br/>丁治英, 王一颉, 刘瑞翔, 2016.青藏高原一次MCC转MCV过程研究[J].高原气象, 35(3):561-573.
[11]Du J, Ma Y C, 2004.Climatic trend of rainfall over Tibetan Plateau from 1971 to 2000[J].Acta Geograp Sinica, 59(3):375-382.<br/>杜军, 马玉才, 2004.西藏高原降水变化趋势的气候分析[J].地理学报, 59(3):375-382.
[12]Fu Y F, Liu Q, Zi Y, et al, 2008.Summer precipitation and latent heating over the Tibetan Plateau based on TRMM measurements[J].Plateau &amp; Mountain Meteor Research, 28(1):8-18.<br/>傅云飞, 刘奇, 自勇, 等, 2008.基于TRMM卫星探测的夏季青藏高原降水和潜热分析[J].高原山地气象研究, 28(1):8-18.
[13]Li D, Bai A J, Huang S J, 2012.Characteristic analysis of a severe convective weather over Tibetan Plateau based on TRMM data[J].Plateau Meteor, 31(2):304-311.<br/>李典, 白爱娟, 黄盛军, 2012.利用TRMM卫星资料对青藏高原地区强对流天气特征分析[J].高原气象, 31(2):304-311.
[14]Li J L, Yu Y, Liu C, 2015.Variation of thunderstorm activities and its connection to East Asian Summer Monsoon in transition region between Qinghai-Xizang Plateau and Loess Plateau[J].Plateau Meteor, 34(6):1575-1583.DOI:10.7522/j.issn.1000-0534.2015.00001.<br/>李江林, 余晔, 刘川, 2015.青藏高原与黄土高原过渡区雷暴活动特征及东亚夏季风的影响[J].高原气象, 34(6):1575-1583.
[15]Liao X W, Song X Q, Wang D X, et al, 2016.Performance analysis of atmospheric boundary layer height measurement in Nagqu based on ceilometer[J].Acta Photonica Sinica, 45(5):142-148.<br/>廖希伟, 宋小全, 王东祥, 等, 2016.激光云高仪对那曲地区大气边界层高度的探测分析[J].光子学报, 45(5):142-148.
[16]Liu L P, Zheng J F, Ruan Z, et al, 2015.The preliminary analyses of the cloud properties over the Tibetan Plateau from the field experiments in clouds precipitation with the vavious radars[J].Acta Meteor Sinica, 2015(4):635-647.<br/>刘黎平, 郑佳锋, 阮征, 等, 2015.2014年青藏高原云和降水多种雷达综合观测试验及云特征初步分析结果[J].气象学报, 2015(4):635-647.
[17]Wang L, Xie C B, Wang Z Z, et al, 2012.Application of gradient method to detect height distribution of atmospheric boundary layer with Lidar[J].J Atmos Environ Opt, 7(3):161-167.<br/>王琳, 谢晨波, 王珍珠, 等, 2012.激光雷达探测大气边界层高度分布的梯度法应用研究[J].大气与环境光学学报, 7(3):161-167.
[18]Pan X, Fu Y F, 2015.Analysis on climatological characteristics of deep and shallow precipitation cloud in summer over Qinghai-Xizang Plateau[J].Plateau Meteor, 34(5):1191-1203.DOI:10.7522/j.issn.1000-0534.2014.00112.<br/>潘晓, 傅云飞, 2015.夏季青藏高原深厚及浅薄降水云气候特征分析[J].高原气象, 34(5):1191-1203.
[19]Ruan Z, Jin L, Ge R S, et al, 2015.The C-band FMCW pointing weather radar system and its observation experiment[J].Acta Meteor Sinica, 2015(3):577-592.<br/>阮征, 金龙, 葛润生, 等, 2015.C波段调频连续波天气雷达探测系统及观测试验[J].气象学报, 2015(3):577-592.
[20]Wang Y, Bo Y, Wang C H, 2016.Relations of cloud amount to asymmetric diurnal temperature change in central and eastern Qinghai-Xizang Plateau[J].Plateau Meteor, 35(4):908-919.DOI:10.7522/j.issn.1000-0534.2015.00033.<br/>王艺, 伯玥, 王澄海, 2016.青藏高原中东部云量变化与气温的不对称升高[J].高原气象, 35(4):908-919.
[21]Xu X D, Zhou M Y, Chen J Y, et al, 2001.A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau[J].Sci in China (Ser.D), 45 (7):577-594.<br/>徐祥德, 周明煜, 陈家宜, 等, 2001.青藏高原地-气过程动力、热力结构综合物理图象[J].中国科学, 31(5):428-440.
[22]Yin J F, Wang D H, Zhai G Q, et al, 2013.A study of cloud vertical profiles from the Cloudsat data over the East Asian Continent[J].Acta Meteor Sinica, 71(1):121-133.<br/>尹金方, 王东海, 翟国庆, 等, 2013.基于星载云雷达资料的东亚大陆云垂直结构特征分析[J].气象学报, 71(1):121-133.
[23]Zhang W C, Zhang Y, Lü Y, et al, 2013.Observation of atmospheric boundary layer height by ground-based LiDAR during haze days[J].J Remote Sens, 17(4):981-992.<br/>张婉春, 张莹, 吕阳, 等, 2013.利用激光雷达探测灰霾天气大气边界层高度[J].遥感学报, 17(4):981-992.
[24]Zhu S C, Yin Y, Jin L J, et al, 2012.A numerical study of the vertical transport of water vapor by intense convection over the Tibetan Plateau[J].Chinese J Atmos Sci, 35(6):1057-1068.<br/>朱士超, 银燕, 金莲姬, 等, 2012.青藏高原一次强对流过程对水汽垂直输送的数值模拟[J].大气科学, 35(6):1057-1068.
Outlines

/