The Variation of Effective Radiation in Qinghai-Tibetan Plateau Based on the CERES Satellite Data

  • YU Han ,
  • ZHANG Jie ,
  • BAI Hanbing
Expand
  • Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China

Received date: 2017-03-23

  Online published: 2018-02-28

Abstract

As an important component of surface radiation balance, effective radiation plays an important role in radiation balance, energy balance and atmospheric circulation. Based on the effective radiation and other relevant parameters of Aqua/CERES satellite products from 2000 to 2015, the spatial and temporal distribution of effective radiation and its factors of the Qinghai-Tibetan Plateau (QTP) were analyzed under two different conditions, which is all-sky and clear-sky. The following conclusions were obtained:The effective radiation of the western region of QTP is larger than the southeast. Because of the regional differences of effective radiation, QTP was divided into four climatic regions by using the EOF method, which is the west edge (region Ⅰ), the midwest hinterlandn (region Ⅱ), the northeast (region Ⅲ) and the southeast (region Ⅳ), The trend of effective radiation is consistent with the upward long-wave radiation with increased (reduced), but the effect of the change of the atmospheric counter radiation on the effective radiation showed different trends in different seasons and regions. The cloud reduces the effective radiation by increasing the atmospheric counter radiation. Over the past decade, the impact of cloud on the surface of the effective radiation was weakened. There is a positive correlation between the upward long-wave radiation and the surface temperature. Atmospheric counter radiation has a positive correlation with the atmospheric temperature and the relative humidity at 500 hPa. It is mainly cold advection and less relative humidity in the midwest hinterland of QTP (region Ⅱ), but in other three regions, it is mainly warm advection and high relative humidity. These factors like cold (warm) advection or relative humidity affect effective radiation by impacting on the atmospheric counter radiation. The results can provide a reference for understanding the diabatic heating characteristics and the influence mechanism of QTP.

Cite this article

YU Han , ZHANG Jie , BAI Hanbing . The Variation of Effective Radiation in Qinghai-Tibetan Plateau Based on the CERES Satellite Data[J]. Plateau Meteorology, 2018 , 37(1) : 106 -122 . DOI: 10.7522/j.issn.1000-0534.2017.00045

References

[1]Bisht G, Bras R L, 2010. Estimation of net radiation from the MODIS data under all sky conditions:Southern Great Plains case study[J]. Remote Sens Environ, 114(7):1522-1534.
[2]Crawford T M, Duchon C E, 1999. An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation[J]. J App Meteor, 38(4):474-480.
[3]Flohn H, 2007. Contributions to a meteorology of the Tibetan highlands[J]. Rda. ucar. edu.
[4]Guillevic P C, Privette J L, Coudert B, et al, 2012. Land surface temperature product validation using NOAA's surface climate observation networks-Scaling methodology for the Visible Infrared Imager Radiometer Suite (VIIRS)[J]. Remote Sens Environ, 124:282-298.
[5]Gui S, Liang S, Li L, 2010. Evaluation of satellite-estimated surface longwave radiation using ground-based observations[J]. J Geophys Res-Atmos, 115(D18):311-319.
[6]Hong J, Kim J, 2008. Simulation of surface radiation balance on the Tibetan Plateau[J]. Geophys Res Lett, 35(L08814):813-826.
[7]Huang J, Wang Y, Wang T, et al, 2006. Dusty cloud radiative forcing derived from satellite data for middle latitude regions of East Asia[J]. Pro Nat Sci-Mater Int, 16(10):1084-1089.
[8]Long D, Gao Y, Singh V P, 2010. Estimation of daily average net radiation from MODIS data and DEM over the Baiyangdian watershed in North China for clear sky days[J]. J Hydrol, 388(3):217-233.
[9]Lorenz E N, 1956. Statistical forecasting program:Empirical orthogonal functions and statistical weather prediction[J]. Sci Rep, 409(2):997-999.
[10]Mora A V, 2011. Atmospheric downwelling longwave radiation at the surface during cloudless and overcast conditions. Measurements and modeling[D]. Spain: Universitat de Girona.
[11]Pearson K, F. R S, 1902. Data for the problem of evolution in man.:A second study of the variability and correlation of the hand[J]. Biometrika, 1(3):345-360.
[12]Raschke E, Bakan S, Kinne S, 2006. An assessment of radiation budget data provided by the ISCCP and GEWEX-SRB[J]. Geophys Res Lett, 33(7):359-377.
[13]Su W, Charlock T P, Rose F G, et al, 2015. Photosynthetically active radiation from Clouds and the Earth's Radiant Energy System (CERES) products[J]. J Geophys Res-Biogeo, 112(G2):531s.
[14]Wang W, 2008. Estimating high spatial resolution clear-sky land surface longwave radiation budget from MODIS and GOES data[J]. Dissertations & Theses-Gradworks.
[15]Wang W, Liang S, Augustine J A, 2009a. Estimating high spatial resolution clear-sky land surface upwelling longwave radiation from MODIS data[J]. IEEE Trans Geosci Remote Sens, 47(5):1559-1570.
[16]Wang W, Liang S, 2009b. Estimation of high-spatial resolution clear-sky longwave downward and net radiation over land surfaces from MODIS data[J]. Remote Sens Environ, 113(4):745-754.
[17]Wang K, Wan Z, Wang P, et al, 2005. Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature//emissivity products[J]. J Geophys Res-Atmos, 110(11): D11109.
[18]Bo Y, Li X L, Wang C H, 2014. Seasonal characteristics of the interannual variations of the Tibetan Plateau snow cover[J]. J Glaciol Geocryol, 36(6):1353-1362.<br/>伯玥, 李小兰, 王澄海, 2014.青藏高原地区积雪年际变化异常中心的季节变化特征[J].冰川冻土36(6):1353-1362.
[19]Cai W Y, Xu X D, Sun J H, 2012. An investigation into the surface energy balance on the southeast edge of the Tibetan Plateau and the cloud's impact[J]. Acta Meteor Sinica, 70(4):837-846.<br/>蔡雯悦, 徐祥德, 孙绩华, 2012.青藏高原东南部云状况与地表能量收支结构[J].气象学报, 70(4):837-846.
[20]Gong Y F, Duan T Y, Chen L X, et al, 2005. The variation characteristics of radiation budget components of the western Tibetan Plateau in 1997/1998[J]. Acta Meteor Sinica, 63(2):225-235.<br/>巩远发, 段廷扬, 陈隆勋, 等, 2005. 1997/1998年青藏高原西部地区辐射平衡各分量变化特征[J].气象学报, 63(2):225-235.
[21]He J H. 2011. Characteristics and influences of atmospheric heat source on the Qinghai-Tibet Plateau[M]. Beijing:China Meteorological Press.<br/>何金海, 2011.青藏高原大气热源特征及其影响和可能机制[M].北京:气象出版社,
[22]Hu L Q, 1997. Research on surface efective radiation in Taklimakan Desert[J]. Arid Land Geo, (1):25-32.<br/>胡列群, 1997.塔克拉玛干沙漠地面有效辐射研究[J].干旱区地理(汉文版), (1):25-32.
[23]Hu Z Y, Cheng G D, Gu L L, et al, 2006. Calculating method of global radiation and temperature on the roadbed surface of Qinghai-Xizang Railway[J]. Adv Earth Sci, 21(12):1304-1313.<br/>胡泽勇, 程国栋, 谷良雷, 等, 2006.青藏铁路路基表面太阳总辐射和温度反演方法[J].地球科学进展, 21(12):1304-1313.
[24]Ji G L, Jiang H, Lü L Z, 1995. Characteristics of longwave radiation over the Qinghai-Xizang Plateau[J]. Plateau Meteor, V14(4):451-458.<br/>季国良, 江灏, 吕兰芝, 1995.青藏高原的长波辐射特征[J].高原气象, V14(4):451-458.
[25]Jiang X W, Li Y Q, 2010. Climatological characteristics of surface radiation over the Tibet Plateau[J]. Resour Sci, 32(10):1932-1942.<br/>蒋兴文, 李跃清, 2010.青藏高原地表辐射的气候特征[J].资源科学, 32(10):1932-1942.
[26]Li Y Y, Zhou S X, 2012. Discussion on greenhouse effect of water vapor enhancement[J]. Energy Conser, 31(7):11-13.<br/>李琰琰, 周少祥, 2012.水汽增强温室效应的探讨[J].节能, 31(7):11-13.
[27]Li R, Yang W, Ji G L, et al, 2006. Parameterization of efective radiation over the Qinghai-Tibet Plateau[J]. Acta Energiae Solaris Sinica, 27(3):274-278.<br/>李韧, 杨文, 季国良, 等, 2006.青藏高原有效辐射参数化[J].太阳能学报, 27(3):274-278.
[28]Li R, Zhao L, Ding Y J, et al, 2011. Variations of surface effective rdiation and its on superficial ground temperatures on Tibet Plateau[J]. J Glaciol Geocryol, 33(5):1022-1032.<br/>李韧, 赵林, 丁永建, 等, 2011.青藏高原地面有效辐射变化及其对表层土温的影响[J].冰川冻土, 33(5):1022-1032.
[29]Liu Y, Weng D M, 2002. Climatological study of temperature effects of cloud-Radiative forcing in the earth-atmospheric system over China[J]. Acta Meteor Sinica, 60(6):766-773.<br/>刘艳, 翁笃鸣, 2002.中国地区云对地-气系统辐射强迫温度效应的气候研究[J].气象学报, 60(6):766-773.
[30]Miu Q L, Jiang Z H, Chen H S, et al, 2010. Modern climatology[M]. Beijing:China Meteorological Press.<br/>缪启龙, 江志红, 陈海山, 等, 2010.现代气候学[M].北京:气象出版社.
[31]Wang J, Hua J, Su L X, et al, 2006. Temporal and spatial distribution of long wave effective radiation over actual terrain in China[C]//Symposium on Climate Change and Its Mechanism and Simulation at the 2006 Annual Meeting of the Chinese Meteorological Society.<br/>王静, 华杰, 苏丽欣, 等, 2006. 实际地形下我国长波有效辐射的时空分布[C]//中国气象学会2006年年会"气候变化及其机理和模拟"分会场论文集.
[32]Wang K L, Zhong Q, Hou P, 1994. Effect of cloud on the surface efective radiation over the Qinghai-Xizang Plateau Ⅰ. Comprehensive Analysis[J]. Plateau Meteor, (1):57-64.<br/>王可丽, 钟强, 侯萍, 1994.青藏高原地区云对地面有效辐射的影响Ⅰ.综合分析[J].高原气象, (1):57-64.
[33]Wang K L, Wu G X, Jiang H, et al, 2002. Cloud-radition-heating effect over the Tibetan Plaetau and summer monsoon of the South Asian[J]. Acta Meteor Sin, 60(2):173-180.<br/>王可丽, 吴国雄, 江灏, 等, 2002.青藏高原云-辐射-加热效应和南亚夏季风——1985年与1987年对比分析[J].气象学报, 60(2):173-180.
[34]Wang Y, Bo Y, Wang C H, 2016. Relations of cloud amount to asymmetric diurnal temperature change in central and eastern Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(4):908-919. DOI:10. 7522/j.issn. 1000-0534. 2015. 00033.<br/>王艺, 伯玥, 王澄海, 2016.青藏高原中东部云量变化与气温的不对称升高[J].高原气象, 35(4):908-919.
[35]Wu G X, 2004. Recent progress in the study of the Qinghai-Xizang Plateau climate dynamics in China[J]. Quat Sci, 24(1):1-9.<br/>吴国雄, 2004.我国青藏高原气候动力学研究的近期进展[J].第四纪研究, 24(1):1-9.
[36]Wu R S, Ma Y M, 2010. Comparative analyses on radiation characteristics in different areas over the Tibet Plateau[J]. Plateau Meteor, 29(2):251-259.<br/>武荣盛, 马耀明, 2010.青藏高原不同地区辐射特征对比分析[J].高原气象, 29(2):251-259.
[37]Wu X, 2014. Retrieval model for estimating clear-sky downward longwave radiation at the surface from the FY-4 geostationary satellite[J]. Climatic Environ Res, 19(3):362-370.<br/>吴晓, 2014.从FY-4静止气象卫星估算晴空地表下行长波辐射通量的反演模式[J].气候与环境研究, 19(3):362-370.
[38]Xie Z P, Hu Z Y, Liu H L, et al, 2017. Evaluation of the surface energy exchange simulation of land surface model CLM4. 5 in alpine meadow over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 36(1):1-12. DOI:10. 7522/j.issn. 1000-0534. 2016. 00012.<br/>谢志鹏, 胡泽勇, 刘火霖, 等, 2017.陆面模式CLM4. 5对青藏高原高寒草甸地表能量交换模拟性能的评估[J].高原气象, 36(1):1-12.
[39]Xu X D, Zhao T L, Shi X H, et al, 2015. A study of the role of the Tibetan Plateau's thermal forcing in modulating rainband and moisture transport in eastern China[J]. Acta Meteor Sin, 73(1):20-35.<br/>徐祥德, 赵天良, 施晓晖, 等, 2015.青藏高原热力强迫对中国东部降水和水汽输送的调制作用[J].气象学报, 73(1):20-35.
[40]Ye D Z, 1979. Meteorology of the Qinghai-Tibet Plateau[M]. Beijing:Science Press.<br/>叶笃正, 1979.青藏高原气象学[M].北京:科学出版社.
[41]Zhou J, Wen J, Wang X, et al, 2017. Analysis of the Qinghai-Xizang Plateau monsoon evolution and its correlation with soil moisture[J]. Plateau Meteor, 36(1):45-56. DOI:10. 7522/j.issn. 1000-0534. 2016. 00003.<br/>周娟, 文军, 王欣, 等, 2017.青藏高原季风演变及其与土壤湿度的相关分析[J].高原气象, 36(1):45-56.
[42]Zhou L M, Chen H S, Peng L X, et al, 2016. Possible connection between interdecadal variation of snow depth in winter and spring over Qinghai-Xizang Plateau and South Asia High in summer[J]. Plateau Meteor, 35(1):13-23. DOI:10. 7522/j.issn. 1000-0534. 2014. 00152.<br/>周利敏, 陈海山, 彭丽霞, 等, 2016.青藏高原冬春雪深年代际变化与南亚高压可能联系[J].高原气象, 35(1):13-23.
[43]Zhu Q G, Lin J R, Shou C W, et al, 2007. Synoptic principles and methods[M]. Beijing:China Meteorological Press.<br/>朱乾根, 林锦瑞, 寿绍文, 等, 2007.天气学原理和方法[M].北京:气象出版社.
Outlines

/