Applicability Evaluation of Merged Soil Moisture in GLDAS and CLDAS Products over Qinghai-Tibetan Plateau

  • CUI Yuanyuan ,
  • QIN Jun ,
  • JING Wenqi ,
  • TAN Guirong
Expand
  • School of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, Xinjiang, China;School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China;College of Meteorology and Oceanography, National University of Defense Technology, Nanjing 211101, Jiangsu, China

Received date: 2017-02-27

  Online published: 2018-02-28

Abstract

The temporal and spatial variations in soil moisture play an important role in the water and energy cycle on the Qinghai-Tibetan Plateau (QTP). In-situ soil moisture observation at 0~10 cm layer from the automatic soil moisture monitoring stations around the QTP and the 3rd QTP Atmospheric Scientific Experiment (TIPEX Ⅲ) were firstly put into use to test and verify two land surface model products, i. e. GLDAS-NOAH(Global Land Data Assimilation System) and CLDAS-V1.0(CMA Land Data Assimilation System Version1.0) by calculating the correlation coefficient and bias between model product and in-situ soil moisture observation. The two merged products were better in the four sites of Ando, Nagqu, Nierong and Sta-ave (Kobayashi alpine meadow), while in Bangor (Grassy alpine grassland), Jiali (Subalpine evergreen leaves Shrub) and Biru (Subalpine evergreen leaf shrubs), the quality of the merged data performed less well, and the Ali station (Dwarf shrub desert) was the site with the largest deviation between the merged data and the in-situ soil moisture data. There was a significant diurnal variation of the quality of soil moisture products and the worst performance of model products shows during 14:00 to 20:00 (Beijing Time). And their performances on simulating the temporal distribution in 2014 were all superior to that in 2013. From June to August, the two models had a good consistency with the in-situ soil moisture data. The quality in 2014 of the two merged products had an advantage over the quality of 2013, and the quality of the two merged products had the lowest score in the middle and the late of August and mid-October in 2013. By further analysis, it is found that when the precipitation intensity increased sharply, the quality of the two merged data became worse. For the two merged products, the quality in the QTP decreased from southeast region to northwest region. Compared with GLDAS, the quality of CLDAS was raised more remarkable improvement in southeastern Sichuan province and Xinjiang region. In addition, the two merged products were in good agreement in northeast Sichuan province.

Cite this article

CUI Yuanyuan , QIN Jun , JING Wenqi , TAN Guirong . Applicability Evaluation of Merged Soil Moisture in GLDAS and CLDAS Products over Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018 , 37(1) : 123 -136 . DOI: 10.7522/j.issn.1000-0534.2017.00035

References

[1]Chahine T M, 1992. The hydrological cycle and its influence on climate[J]. Nature, 359:373-3802.
[2]Chen W L, Jiang Z H, Li L, 2011. Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs[J]. J Climate, 24(17):4741-4756.
[3]Chen Y Y, Yang K, Qin J, et al, 2013. Evaluation of AMSR-Eretrievals and GLDAS simulations against observations of a soil moisture net work on the central Qinghai-Xizang Plateau[J]. J Geophys Res:Atmos, 118(10):4466-4475.
[4]Cheng G, Wu T H, 2007. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. J Geophys Res, 112:2-3.
[5]Mitchell K E, Lohmann D, Houser P R, et al, 2004. The multi-institution North American Land Data Assimilation System (NLDAS):Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system[J]. J Geophys Res:Atmos, 109(D7):1-32.
[6]Pierce D W, Barnett T P, Santer B D, et al, 2009. Selecting global climate models for regional climate change studies[J]. P Natl Acad Sci USA, 106(21):8441-8446.
[7]Rodell M, Houser P R, Jambor U E A, et al, 2004. The global land data assimilation system[J]. B Am Meteorol Soc, 85(3):381-394.
[8]Shi C X, Xie Z H, Qian H, et al, 2011. China land soil moisture EnKF data assimilation based on satellite remote sensing data[D]. Sci China Earth Sci, 54(9): 1430-1440.
[9]Su Z, De R P, Wen J, et al, 2013. Evaluation of ECMWF's soil moisture analyses using observations on the Qinghai-Xizang Plateau[J]. J Geophys Res:Atmos, 118(11):5304-5318.
[10]Van den Hurk B, 2002. Overview of the European Land Data Assimilation (ELDAS) project[J]. Trans. Amer. Geophys. Union, 83.
[11]Wang A, Zeng X, 2012. Evaluation of multi-reanalysis products with in situ observations over the Qinghai-Xizang Plateau[J]. J Geophys Res:Atmos, 117(D5):214-221.
[12]Wang S L, Jin H J, Li S X, et al, 2000. Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts[J]. Permafrost Periglac, 11(1):43-53.
[13]Wang W, Xie P, Yoo S H, et al, 2011. An assessment of the surface climate in the NCEP climate forecast system reanalysis[J]. Clim Dynam, 37:1601-1620.
[14]Xu W X, Gu S, Zhao X Q, et al, 2011. High positive correlation between soil temperature and NDVI from 1982 to 2006 in Alpine Meadow of the Three-River Source Region on the Qinghai-Xizang Plateau[J].Int J Appl Earth Obs, 13(4):528-535.
[15]Zhao L, Ping C L, Yang D, et al, 2004. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China[J]. Global Planet Change, 43(1):19-31.
[16]Bao H Y, Yang K, Li Y L, et al, 2016. Error of GLDAS soil moistrue product in Tibetan Plateau region and its cause[C]//Xi'an: Chinese Meteorology Society S8 application and evaluation of numerical model products.<br/>保鸿燕, 杨凯, 李一玲, 等, 2016. GLDAS土壤湿度在青藏高原地区的误差及其原因[C]//西安: 中国气象学会年会S8数值模式产品应用与评估.
[17]Chen Y Y, Song X D, Huang J F, et al, 2016. Evaluation of the high-resolution daily merged precipitation product over China based on in situ observations[J]. J Nat Resour, 31(6):1004-1014.<br/>陈圆圆, 宋晓东, 黄敬峰, 等, 2016.基于地面站点观测降水资料的中国区域日降水融合产品精度评价[J].自然资源学报, 31(6):1004-1014.
[18]Feng L, Zhong L, Ma Y M, et al, 2016. Estimation of soil heat flux over the northern Qinghai-Xizang Plateau based on in-situ soil temperature and moisture data[J]. Plateau Meteor, 35(2):297-308. DOI:10. 7522/j.issn. 1000-0534. 2015. 00006.<br/>冯璐, 仲雷, 马耀明, 等, 2016.基于土壤温湿度观测资料估算藏北高原地区土壤热通量[J].高原气象, 35(2):297-308.
[19]Gong W W, 2014. Evaluation on the products of CMA Land Data Assimilation System[D]. Nanjing: Nanjing University of Information Science &amp; Technology.<br/>龚伟伟, 2014. CMA陆面数据同化系统(CLDAS)产品评估[D]. 南京: 南京信息工程大学.
[20]Jiang L P, Shi C X, Zhang T, 2013. Product Manual of CLDAS-V1. 0[Z]. Beijing: National Meteorological Information Center.<br/>姜立鹏, 师春香, 张涛, 2013. CLDAS-V1. 0产品说明书[Z]. 北京: 国家气象信息中心.
[21]Lai X, Wen J, Ceng S X, et al, 2014. Numerical simulation and evaluation study of soil moisture over China by using CLM4. 0 Model[J]. Chinese J Atmos Sci, 38(3):499-512.<br/>赖欣, 文君, 岑思弦, 等, 2014. CLM4. 0模式对中国区域土壤湿度的数值模拟及评估研究[J].大气科学, 38(3):499-512.
[22]Li A, 2013. Analysis and optimization of soil moisture and snow data[D]. Nanjing: Nanjing University of Information Science &amp; Technology.<br/>李昂, 2013. 土壤湿度及积雪数据的比较分析与融合[D]. 南京: 南京信息工程大学.
[23]Li D Q, 2010. Simulation and estimation of soil moisture[D]. Lanzhou: Lanzhou University.<br/>李得勤, 2010. 土壤湿度的模拟和估算研究[D]. 兰州: 兰州大学.
[24]Li X, Nan Z T, Wu L Z, et al, 2008. Environmental and Ecological Science Data Center for West China:integration and sharing of environmental and ecological data[J]. Adv Earth Sci, 23(6):628-637.<br/>李新, 南卓铜, 吴立宗, 等, 2008.中国西部环境与生态科学数据中心:面向西部环境与生态科学的数据集成与共享[J].地球科学进展, 23(6):628-637.
[25]Li Y Q, 2011. The observational basis of the 3rd Qinghai-Xizang Plateau atmospheric scientific experiment[J]. Plateau Mountain Meteor Res, 31(3):77-82.<br/>李跃清, 2011.第三次青藏高原大气科学试验的观测基础[J].高原山地气象研究, 31(3):77-82.
[26]Liu C, Yu Y, Xie J, et al, 2015. Applicability of soil temperature and moisture in several datasets over Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(3):653-665. DOI:10. 7522/j.issn. 1000-0534. 2015. 00034.<br/>刘川, 余晔, 解晋, 等, 2015.多套土壤温湿度资料在青藏高原的适用性[J].高原气象, 34(3):653-665.
[27]Liu H L, Hu Z Y, Yang Y X, et al, 2015. Simulation of the freezing-thawing processes at Nagqu area over Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(3):676-683. DOI:10. 7522/j.issn. 1000-0534. 2015. 00021.<br/>刘火霖, 胡泽勇, 杨耀先, 等, 2015.青藏高原那曲地区冻融过程的数值模拟研究[J].高原气象, 34(3):676-683.
[28]Ma Z G, Fu C B, Xie L, et al, 2001. Some problems in the study on the relationship between soil moisture and climate change[J]. Adv Earth Sci, 16(4):563-568.<br/>马柱国, 符淙斌, 谢力, 等, 2001.土壤湿度和气候变化关系研究中的某些问题[J].地球科学进展, 16(4):563-566.
[29]Shi C X, 2008. China land soil moisture EnKF data assimilation based on satellite remote sensing data[D]. Beijing: Graduate School of Chinese Academy of Sciences.<br/>师春香, 2008. 基于EnKF算法的卫星遥感土壤湿度同化研究[D]. 北京: 中国科学院研究生院.
[30]Sun G H, Hu Z Y, Wang J M, et al, 2016. Comparison analysis of sensible heat fluxes at two spatial scales in Naqu Area[J]. Plateau Meteor, 35(2):285-296. DOI:10. 7522/j.issn. 1000-0534. 2015. 00088.<br/>孙根厚, 胡泽勇, 王介民, 等, 2016.那曲地区两种空间尺度感热通量的对比分析[J].高原气象, 35(2):285-296.
[31]Tao S Y, Chen L S, Xu X D, et al, 1999. Advances in theoretical studies on the second Qinghai-Xizang Plateau atmospheric scientific experiment(1)[M]. Beijing:Meteorological Press.<br/>陶诗言, 陈联寿, 徐祥德, 等, 1999.第二次青藏高原大气科学试验理论研究进展(一)[M].北京:气象出版社.
[32]Wang W Z, Gao Y H, Xu J W, 2013. Applicability of GLDAS and climate change in the Qinghai-Xizang Plateau and Its surrounding arid area[J]. Plateau Meteor, 32(3):635-64. DOI:10. 7522/j.issn. 1000-0534. 2013. 00054.<br/>王婉昭, 高艳红, 许建伟, 2013.青藏高原及其周边干旱区气候变化特征与GLDAS适用性分析[J].高原气象, 32(3):635-645.
[33]Wang G N, Yang M X, Wang X J, et al, 2012. Variations in soil moisture at different time scales of BJ site on the central Tibetan Plateau[J]. China J Soil Sci, 43(2):286-293.<br/>万国宁, 杨梅学, 王学佳, 等, 2012.青藏高原中部BJ站土壤湿度不同时间尺度的变化[J].土壤通报, 43(2):286-293.
[34]Ye D Z, Gao Y X, 1979. Meteorology of the Qinghai-Tibet Plateau[M]. Beijing:Science Press, 1-278.<br/>叶笃正, 高由禧, 1979.青藏高原气象学[M].北京:科学出版社, 1-278.
[35]Yu J J, Shen Y, Pan Y, et al, 2013. Improvement of satellite-based precipitation estimates over China based on probability density function matching method[J]. J Appl Meteor Sci, 24(5):544-553.<br/>宇婧婧, 沈艳, 潘旸, 等, 2013.概率密度匹配法对中国区域卫星降水资料的改进.应用气象学报[J]. 24(5):544-553.
[36]Zhang S B, Chen Y C, Lü S H, et al, 2013. Numerical simulation of impact of vegetation in Qinghai-Xizang Plateau on summertime precipitation in Eastern China[J]. Plateau Meteor, 32(5):1236-1245. DOI:10. 7522/j.issn. 1000-0534. 2012. 00119.<br/>张少波, 陈玉春, 吕世华, 等, 2013.青藏高原植被变化对中国东部夏季降水影响的模拟研究[J].高原气象, 32(5):1236-1245.
[37]Zhang T, 2013. Multi-source data fusion and application research base on LAPS/STMAS[D]. Nanjing: Nanjing University of Information Science &amp; Technology.<br/>张涛, 2013. 基于LAPS/STMAS的多源资料融合及应用研究[D]. 南京: 南京信息工程大学.
[38]Zhang J J, Zhu B Z, Zhu F K, et al, 1988. Advances in meteorology of Qinghai-Xizang Plateau[M]. Beijing:Science Press.<br/>章基嘉, 朱抱真, 朱福康, 等, 1988.青藏高原气象学进展[M].北京:科学出版社.
[39]Chinese Academy of Sciences Chinese Vegetation Map Editorial Board, 2001. Chinese Vegetation Atlas1: 1000000[Z]. Beijing: Science Press.<br/>中国科学院中国植被图编辑委员会, 2001. 中国植被图集1: 1000000[Z]. 北京: 科学出版社.
[40]Zhou X J, Ruo C, Li W L, et al, 1995. Total ozone changes in China and low center of the Tibetan plateau[J]. Chinese Sci Bull, 40(15):1396-1398.<br/>周秀骥, 罗超, 李维亮, 等. 1995.中国地区臭氧总量变化与青藏高原低值中心[J].科学通报, 40(15):1396-1398.
[41]Zhu Z, Shi C X, 2014. Simulation and assessment of soil moisture in CLDAS and GLDAS[J]. Sci Tech Engrg, 14(32):138-144.<br/>朱智, 师春香, 2014.中国气象局陆面同化学院和全球陆面同化系统对中国区域土壤湿度的模拟与评估[J].科学技术与工程, 14(32):138-144.
[42]Zhu Z K, Ma Y M, Hu Z Y, et al, 2015. Netecosystem carbon dioxide exchange in alpine meadow of Nagchu region over Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(5):1217-1233. DOI:10. 7522/j.issn. 1000-0534. 2014. 00135.<br/>朱志鹍, 马耀明, 胡泽勇, 等, 2015.青藏高原那曲高寒草甸生态系统CO2净交换及其影响因子[J].高原气象, 34(5):1217-1233.
[43]Zhuang Y, 2014. Merging study of multiple active and passive microwave remotely sensed soil moisture products in China[D]. Nanjing: Nanjing University of Information Science &amp; Technology.<br/>庄媛, 2014. 中国区域多源主被动微波遥感土壤水分产品融合研究[D]. 南京: 南京信息工程大学.
Outlines

/