The Relationship between Kunming Quasi-stationary Front and Yunnan-Guizhou Plateau Terrain

  • DUAN Xu ,
  • DUAN Wei ,
  • XING Dong ,
  • ZHANG Yanan
Expand
  • Yunnan Institute of Meteorology Sciences, Kunming 650034, Yunnan, China;Yunnan University, Kunming 650021, Yunnan, China

Received date: 2017-01-23

  Online published: 2018-02-28

Abstract

Using ground meteorological observation data from 1961 to 2010, ERA-Interim reanalysis data from January 10 to February 15, 2008 and December 10 to 20, 2013 and terrain elevation data of digital elevation model(DEM), the relationships of Yunnan-Guizhou Plateau topography, position of Kunming quasi-stationary front(KQSF) and meteorological elements near the front were analyzed. The main results are as follows:(1) The Yunnan-Guizhou Plateau is divided into the eastern and the western in Wumeng Mountains (103°E). The KQSF present frequency is 61.5% in the eastern area of Yunnan-Guizhou Plateau, the frequency of the western region is 38.5%. Most of the activity of cold air is blocked in the eastern area of Yunnan-Guizhou Plateau. Only a small part of the strong cold air activity can across Wumeng Mountains, and get into the western area of Yunnan-Guizhou Plateau. The effect of plateau topography on cold air activity is significant. (2) There is a good correlation between the advance (retreat) of KQSF and the temperature and pressure field before (after) the frontline. The stronger the cold air mass after KQSF, the weaker the warm air mass before KQSF, the KQSF position is more westerly. On the contrary, the KQSF position is more easterly. The significant correlation is mainly reflected in the western area of Yunnan-Guizhou Plateau. The effect of terrain reduced the correlation in the western area of Yunnan-Guizhou Plateau. (3) Blocking effect of plateau topography makes cold air activities moving slowly, or even stagnation and leads to the formation of quasi stationary front. Uplift effect of plateau topography results in the formation of clockwise secondary circulation in local low layer, leading to the emergence of the inversion layer. Once the lifting effect is weakened when the cold air passes over the plateau, the inversion layer will disappear. (4) The zero line of zonal wind can describe the front position and the cold air mass thickness, which illustrates that the distribution of KQFS is quasi-North-South. And characteristics of cold air path is from east to west. (5)The potential height after front can indicate the thickness of the air mass. In the eastern part of the Yunnan-Guizhou Plateau, the frontline position depends on the thickness of the cold air mass. In the eastern part, the frontline position depends on contrasted dynamics between the cold and warm air mass.

Cite this article

DUAN Xu , DUAN Wei , XING Dong , ZHANG Yanan . The Relationship between Kunming Quasi-stationary Front and Yunnan-Guizhou Plateau Terrain[J]. Plateau Meteorology, 2018 , 37(1) : 137 -147 . DOI: 10.7522/j.issn.1000-0534.2017.00032

References

[1]Jong P C, 1950. The Kunming quasi-stationary front[J]. J Chinese Geophys Soc, 17(2):87-103.
[2]Du Z J, Ding Z Y, Zhang S Y, 2007. Analysis of atmospheric circulation and structure of Yunnan-Guizhou Quasi-Stationary Front[J]. J Trop Meteor, 23(3):284-292.<br/>杜正静, 丁治英, 张书余, 2007. 2001年1月滇黔准静止锋在演变过程中的结构及大气环流特征分析[J].热带气象学报, 23(3):284-292.
[3]Du Z J, Xiong F, He Y L, et al, 2009. Typical model and circulation characteristics of severe freezing weather process in Guizhou[J]. J Guizhou Meteor, 33(1):7-10.<br/>杜正静, 熊方, 何玉龙, 等, 2009.贵州严重冰冻天气过程典型模型及环流特征分析[J].贵州气象, 33(1):7-10.
[4]Duan X, Duan W, Xing D, 2017. An objective methods of front identification for Kunming Quasi-Stationary Front[J]. Acta Meteor Sinica, 75(5):811-822.<br/>段旭, 段玮, 邢冬, 2017.昆明准静止锋客观判识方法研究[J].气象学报, 75(5):811-822.
[5]Duan X, Li Y, Sun X D, 2002. Structure of Kunming Quasi-stationary Front[J]. Plateau Meteor, 21(2):205-209.<br/>段旭, 李英, 孙晓冬, 2002.昆明准静止锋结构[J].高原气象, 21(2):205-209.
[6]Duan X, Tao Y, 2009a. Climatic characteristics and cause of rare low temperature snow and ice weather in southern China in January 2008[J]. Journal of Yunnan University, 31(5):477-483.<br/>段旭, 陶云, 2009a. 2008年1月中国南方地区罕见低温冰雪天气的气候特征及其成因[J].云南大学学报, 31(5):477-483.
[7]Duan X, Xu M L, Wang M, et al, 2009b. Research and application of fine weather forecast technology in Yunnan Province[M]. Beijing:Meteorological Press, 58-61.<br/>段旭, 许美玲, 王曼, 等, 2009b.云南省精细化天气预报技术研究与应用[M].北京:气象出版社, 58-61.
[8]Fan P, 1956. Kunming Quasi-Stationary Front[J]. J Wea, 6(suppl1):14-16.<br/>樊平, 1956.昆明准静止锋[J].天气月刊, 6(增刊1):14-16.
[9]Gu Z C, 1951. Effect of Tibet Plateau on the East Asian circulation and its importance[J]. Scientia Sinica Mathematica, 2(3):283-303.<br/>顾震潮, 1951.西藏高原对东亚环流的影响和它的重要性[J].气象学报, 22(1):283-303.
[10]Li D W, Yang J, Wu X Y, 2011. Discussion on genesis of wire icing in Guizhou during the freezing rain and snow storm in January 2008[J]. Meteor Mon, 37(2):161-169.<br/>李登文, 杨静, 吴兴洋, 2011. 2008年低温冰冻雨雪灾害天气过程中贵州电线积冰气象条件分析[J].气象, 37(2):161-169.
[11]Liao L F, Gu X P, Hui X Y, 2015. Similarities and differences of three methods for retrieving atmospheric precipitable water in Wumeng Mountain Area[J]. Meteor Sci Technol, 43(3):387-392.<br/>廖留峰, 谷小平, 惠小英, 2015.乌蒙山区3种大气可降水量反演法的异同[J].气象科技, 43(3):387-392.
[12]Lin Z G, Lin M, Lin K P, et al, 2014. A convective process of Quasi-Stationary Front triggered by southward-moving weak cold air from Tibetan plateau[J]. J Trop Meteor, 30(1):111-118.<br/>林宗桂, 林墨, 林开平, 等, 2014.一股高原南下弱冷空气触发准静止锋对流过程分析[J].热带气象学报, 30(1):111-118.
[13]Miao C S, Zhao W N, Wang J H, et al, 2014. Circulation anomaly wave effects of Eastern Yunnan a spring flood and drought near 53 years[J]. Arid Zone Res, 31(2):250-260.<br/>苗春生, 赵文宁, 王坚红, 等, 2014.近53 a云南东部春季旱涝及其环流距平波列影响[J].干旱区研究, 31(2):250-260.
[14]Sun J H, Zhao S X, 2008. Quasi-stationary front and stratification structure of the freezing rain and snow storm over Southern China in January 2008[J]. Climatic Environ Res, 13(4):368-384.<br/>孙建华, 赵思雄, 2008. 2008年初南方雨雪冰冻灾害天气静止锋与层结分析[J].气候与环境研究, 13(4):368-384.
[15]Yang G M, Kong Q, Mao D Y, et al, 2008. Analysis of the long-lasting cryogenic freezing rain andsnow weather in the beginning of 2008[J]. Acta Meteor Sinica, 66(5):836-849.<br/>杨贵名, 孔期, 毛冬艳, 等, 2008. 2008年初"低温雨雪冰冻"灾害天气的持续性原因分析[J].气象学报, 66(5):836-849.
[16]Yang J C, Tao S Y, Ye D Z, et al, 1960. Xizang Tibet Plateau meteorology[M]. Beijing:Science Press, 280.<br/>杨鉴初, 陶诗言, 叶笃正, 等, 1960.西藏高原气象学[M].北京:科学出版社, 280.
[17]Yang S Y, Li H H, Yan H S, et al, 2012. Climatic characteristics and cause analysis of extreme low temperature freezing weather weather in eastern Yunnan in early 2011[J]. Journal of Chengdu University of information technology, 31(2):250-260.<br/>杨素雨, 李华宏, 严华生, 等, 2012. 2011年初云南东部极端低温冰冻灾害天气气候特征及成因分析[J].成都信息工程学院学报, 31(2):250-260.
[18]Ye D Z, Gao Y X, 1979. The Qinghai-Tibet Plateau meteorology[M]. Beijing:Science Press, 39-40.<br/>叶笃正, 高由禧, 1979.青藏高原气象学[M].北京:科学出版社, 39-40.
[19]尤红, 周泓, 白学文, 等, 2013a. 2011年3月云南连续两次强倒春寒天气过程对比分析[J].暴雨灾害, 32(2):167-175.
[20]You H, Zhou H, Bai X W, et al, 2013a. Comparative analysis of continuous two strong coldness processes in late spring in March 2011 in Yunnan[J]. Torrential Rain Disaster, 32(2):167-175.
[21]You H, Zhou H, Yang H, et al, 2013b. Analysis on the late spring coldness processes in Yunnan[J]. Meteor Mon, 39(6):738-748.<br/>尤红, 周泓, 杨红, 等, 2013b.云南倒春寒天气过程的分析研究[J].气象, 39(6):738-748.
[22]Zhang J H, Zhang W C, Zheng J M, et al, 2016. Variation of Kunming quasi-stationary front and its effect analysis in winter during 1970-2009[J]. Plateau Meteor, 35(5):1298-1306. DOI:10. 7522/j.issn. 1000-0534. 2015. 00042.<br/>张精华, 张万诚, 郑建萌, 等, 2016. 1970-2009年冬季昆明准静止锋的变化特征及其影响分析[J].高原气象, 35(5):1298-1306.
[23]Zhou B G, Chen J Y, He J J, et al, 2012. Causes analysis of winter season persistent drought in Southwest China in 2009-2010[J]. Journal of Anhui Nnormal University (Natural Science), 35(1):53-55.<br/>周秉根, 陈建业, 何俊杰, 等, 2012. 2009-2010年冬春季节我国西南地区持续干旱的成因分析[J].安徽师范大学学报(自然科学版), 35(1):53-55.
Outlines

/