Characteristics of Environment Condition and Cloud Microphysics during Heavy Wet Thunderstorms at Guanzhong in Mid Summer

  • ZHANG Yabin ,
  • HUANG Lei ,
  • MAO Dongyan ,
  • YANG Rui
Expand
  • Xi'an Meteorological Observatory of Shaanxi Province, Xi'an 710016, Shaanxi, China;National Meteorological Centre, Beijing 100081, China;Xi'an Meteorological Bureau of Shaanxi Province, Xi'an 710016, Shaanxi, China

Received date: 2017-01-19

  Online published: 2018-02-28

Abstract

Spatial and temporal distribution of cloud-to-ground (CG) flashes and mesoscale characteristics of two heavy wet thunderstorm processes with most CG lightning in the last 10 years at Guanzhong, which occurred respectively on August 11-12, 2010 (the "0811") and August 15-16, 2011(the "0815"), were analyzed by using NCEP reanalysis, CG lightning, satellite, Radar and WRF data. The results show that heavy wet thunderstorms at Guanzhong occurred favorably under the circulation background of two-through and one-ridge in Eurasia mid-high latitude, and Shaanxi province is controlled by the stable West Pacific Subtropical High. Low level shear line is the directly influence system. During thunderstorm, cold advection on upper levels and moist barotropic potential vorticity move southward, the energy frontal zone over northern Shaanxi move southward and invade the unstable stratification environment over central and southern Shaanxi. The low-level warm tongue over southwest of Shaanxi extend to the northeast. With unstable stratification increasing and high humidity at the early stage, the unstable energy at Guanzhong increases significantly with CAPE (Convective Available Potential Energy) above 3 000 J·kg-1. The vertical ascending motion is strong and deep. Aforementioned characteristics provide favorable environmental conditions for strong wet thunderstorm. The West Pacific Subtropical High develops strongly and westward, unstable stratification with dry air at high levels and wet at low levels, high temperature and humidity near surface layer, obviously CAPE, relatively high altitudes of vertical motion center and convective cloud, above factors are important reasons for that heavy wet thunderstorms have more CG flashes than ordinary rainstorms. The accumulated areas of CG flashes are consistent with the high potential temperature areas at lower levels, which also mainly located near positive helicity that below 50 m-2·s-2. There is a significant difference between the distribution pattern of TBB and CG flashes at different stages of heavy wet thunderstorm. At the developing stage, the oval cold-cloud cap of MCS had expanded significantly, the high gradient area of TBB bended northward with anticyclone shape. Convective cloud tops did not match the accumulated areas of the aggregating and increasing CG flashes. At the mature stage, the accumulated areas of CG flashes were basically coincidence with the convective cloud tops, the density and frequency of CG flashes reached maxima. Meanwhile, the center temperature of TBB reduced below to -76℃ and reached minimum, positive CG flashes scattered near southwest of the areas that accumulated negative CG flashes and also reached the maximum frequency of whole process. At the dissipating stage, the CG flashes weakened and dispersed obviously and its accumulated areas gradually separated from the convective cloud tops, but positive CG flashes were relatively active. Snow and graupel mixing ratio at -20~-10℃ layers is an effective indicator to flash trend. There are positive correlations between the number of particles and the frequency of CG flashes. Snow particle areas are relatively continuous and around the flash. Graupel particle areas are relatively dispersed and closer to the center of CG flash areas. At the mature stage, the vertical distribution of snow particle ranged from 8 to 16 kilometers, while graupel ranged from 6 to 12 kilometers. Accumulated areas of above particles corresponded to areas with large vertical velocity. With the significant increase of convection and vertical ascending motion, average current of CG flashes and rainfall intensity are increased, and the snow particles have obvious correlation with CG flash activity. When the vertical ascending motion become weak, average current of CG flashes and rainfall intensity will become small and have obvious correlation with graupel. Rate of CG flashes peak when convective cloud develop to the highest altitude. After CG flash doubling, cold-cloud area reach to peak in the next 3 hours and the maximum rainfall happen subsequently.

Cite this article

ZHANG Yabin , HUANG Lei , MAO Dongyan , YANG Rui . Characteristics of Environment Condition and Cloud Microphysics during Heavy Wet Thunderstorms at Guanzhong in Mid Summer[J]. Plateau Meteorology, 2018 , 37(1) : 167 -184 . DOI: 10.7522/j.issn.1000-0534.2017.00041

References

[1]Carey L D, Murphy M J, Mccormick T L, et al, 2005. Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system[J]. J Geophy Res, 110(3):480-496.
[2]Juan F C, Emiliano H, Ricardo G H, et al, 2006. A 3-year study of cloud-ground lightning flash characteristics of mesoscale convective systems over the Western Mediterranean Sea[J]. Atmos Res, 79:89-107.
[3]Manuel M, Jesus R, Fernando P, et al, 2015. Atmospheric background associated with severe lightning thunderstorms in Central Spain[J]. International Journal of Climatology, 35:558-569.
[4]McCaul J E W, Goodman S J, LaCasse K M, et al, 2009. Forecasting lightning threat using cloud-resolving model simulations[J]. Wea Forecasting, 24 (3):709-729.
[5]McCaul J E W, LaCasse K, Goodman S J, et al, 2006. Use of high resolution WRF simulations to forecast lightning threat[C]//Preprints of the 23rd Conference on Severe Local Storms. St. Missouri, CD-ROM, AMS.
[6]Nicolau P, Tomeu R, Joan B, et al, 2007. Lightning and Precipitation relationship in summer thunderstorms:Case studies in the North Western Mediterranean region[J]. Atmos Res, 85:159-170.
[7]Niu L T, Li C E, Wang Y, et al, 2014. Analysis of cold eddy squall line weather characteristics in middle region of Shanxi[J]. J Shaanxi Meteor, 4:533-542.
[8]Saunders C P R, Peck S L, 1998. Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions[J]. J Geophys Res, 103 (D12):13949-13956.
[9]Zajac B A, Rutledge S A, 2001. Cloud-to-ground lightning activity in the contiguous United States from 1995 to 1999[J]. Mon Wea Rev, 129:999-1019.
[10]Zepka G S, Pinto O, Saraiva A C V, 2013. Lightning forecasting in southeastern Brazil using the WRF model[J]. Atmos Res, 135-136(1):344-362.
[11]Feng G L, Qie X S, Yuan T, et al, 2006. A case study of cloud-to-ground lightning activities in hailstorms under cold eddy synoptic situation[J]. Acta Meteor Sinica, 64(2):211-220.<br/>冯桂力, 郄秀书, 袁铁, 等, 2006.一次冷涡天气系统中雹暴过程的地闪特征分析[J].气象学报, 64(2):211-220.
[12]Guo F X, Sun J, 2012. Review and progress of thunderstorm electrification mechanisms and numerical modelings[J]. Plateau Meteor, 31(3):862-874.<br/>郭凤霞, 孙京, 2012.雷暴起电机制及其数值模拟的回顾与进展[J].高原气象, 31(3):862-874.
[13]Huang L, Zhou Y J, Gu J, et al, 2015. Comparative study on the lightning activities and microphysical and dynamical quantities in a thunderstorm simulated by the Weather Research and Forecasting model[J]. Chinese J Atmos Sci, 39 (6):1095-1110.<br/>黄蕾, 周筠珺, 谷娟, 等, 2015.雷暴中雷电活动与WRF模式微物理和动力模拟量的对比研究[J].大气科学, 39 (6):1095-1110.
[14]Kong Y Y, Shen J G, 2011. Forecast of severe storms[M]. Beijing:China Meteorological Press, 1-13.<br/>孔燕燕, 沈建国, 2011.强雷暴预报[M].北京:气象出版社, 1-13.
[15]Liang M X, Guo F X, Wu X, et al, 2016. Numerical simulation of influence of relative growth of ice and graupel on noninductive electrification[J]. Plateau Meteor, 35(2):538-547. DOI:10. 7522/j.issn. 1000-0534. 2015. 00013.<br/>梁梦雪, 郭凤霞, 吴鑫, 等, 2016.冰相粒子的相对增长对非感应起电影响的模拟研究[J].高原气象, 35(2):538-547.
[16]Liu D X, Qie X S, Feng G L, 2010. Evolution characteristics of the lightning and the relation with dynamical structure in a mesoscale convective system over North China[J]. Chinese J Atmos Sci, 34(1):95-104.<br/>刘冬霞, 郄秀书, 冯桂力, 2010.华北一次中尺度对流系统中的闪电活动特征及其与雷暴动力过程的关系研究[J].大气科学, 34(1):95-104.
[17]Luo H, Liu Y, Feng G L, et al, 2009. Mesoscale characteristics of a super thunderstorm weather in central shaanxi province and its cause analysis[J]. Plateau Meteor, 28(4):816-826.<br/>罗慧, 刘勇, 冯桂力, 等, 2009.陕西中部一次超强雷暴天气的中尺度特征及成因分析[J].高原气象, 28(4):816-826.
[18]Meng W G, Yi Y M, Yang Z L, et al, 2008. Thunderstorm cloud to ground lightning characteristics in the contiguous Guangzhou City and the influences of local environmental conditions[J]. J Appl Meteor Sci, 19(5):611-619.<br/>蒙伟光, 易燕明, 杨兆礼, 等, 2008.广州地区雷暴过程云一地闪特征及其环境条件[J].应用气象学报, 19(5):611-619.
[19]Mu J L, Li Z C, Chen Y, 2012. Characteristics of ground lightning and relationships of mesoscale convective systems and heavy rainfall in a strong rainstorm[J]. Meteor Mon, 38(1):56-65.<br/>慕建利, 李泽椿, 谌芸, 2012.一次强暴雨过程地闪活动特征与中尺度对流系统和强降水的关系[J].气象, 38(1):56-65.
[20]Niu L T, Li C E, Wang Y, et al, 2014. Analysis of the characteristics of a cold vortex squall line in central Shaanxi[J]. J Shaanxi Meteor, 4:7-10.<br/>牛乐田, 李春蛾, 王英, 等, 2014.陕西中部一次冷涡飑线天气特征分析[J].陕西气象, 4:7-10.
[21]Pan L J, Zhang H F, Hou J Z, et al, 2015. Initiation and evolution of storm over loess plateau for weak synoptic forcing situations[J]. Plateau Meteor, 34(4):982-990. DOI:10. 7522/j.issn. 1000-0534. 2014. 00015.<br/>潘留杰, 张宏芳, 侯建忠, 等, 2015.弱天气系统强迫下黄土高原强对流云的初生及演变[J].高原气象, 34(4):982-990.
[22]Qie X S, Liu D X, Sun Z L, 2014. Recent advances in research of lightning meteorology[J]. Acta Meteor Sinica, 72(5):1054-1065.<br/>郄秀书, 刘冬霞, 孙竹玲, 2014.闪电气象学研究进展[J].气象学报, 72(5):1054-1065.
[23]Shou S W, Li S S, Shou Y X, et al, 2012. Mesoscale synoptic dynamics[M]. Beijing:China Meteorological Press, 284-290.<br/>寿绍文, 励申申, 寿亦萱, 等, 2012.中尺度大气动力学[M].北京:气象出版社, 284-290.
[24]Sun A P, Yan M H, Zhang Y J, 2002. Numerical study of thunderstorm electrification with a three-dimensional dynamics and electrification coupled model. Ⅰ:Model description and parameterization of electrical process[J]. Acta Meteor Sinica, 60 (6):722-731.<br/>孙安平, 言穆弘, 张义军, 2002.三维强风暴动力-电耦合数值模拟研究Ⅰ:模式及其电过程参数化方案[J].气象学报, 60(6):722-731.
[25]Wang F, Xiao W A, Lei H C, et al, 2009. Numerical simulation of electricity characteristic of a thunderstorm case in summer of Jilin[J]. Plateau Meteor, 28(2):385-394.<br/>王芳, 肖稳安, 雷恒池, 等, 2009.吉林地区一次雷暴云个例电和云微物理特征的模拟分析[J].高原气象, 28(2):385-394.
[26]Wang T Y, Zhu K Y, Zhang J, et al, 2015. Structural features and numerical simulation of a thermodynamic thunderstorm in Lhasa[J]. Plateau Meteor, 34(5):1237-1248. DOI:10. 7522/j.issn. 1000-0534. 2014. 00054.<br/>王天义, 朱克云, 张杰, 等, 2015.拉萨一次热力雷暴的结构特征及数值模拟[J].高原气象, 34(5):1237-1248.
[27]Wang T T, Wang Y C, Chen M X, 2011. Contrastive analysis of formation of dry and moist thunderstorms in Beijing[J]. Meteor Mon, 37(2):142-155.<br/>王婷婷, 王迎春, 陈明轩, 2011.北京地区干湿雷暴形成机制的对比分析[J].气象, 37(2):142-155.
[28]Xiao X H, Wu M F, Wang X X, et al, 2012. Contrastive analysis of thermal unstable conditions of two strong convective processes[J]. J Shaanxi Meteor, 2:17-21.<br/>肖湘卉, 武麦凤, 王旭仙, 等, 2012.两次强对流天气的热力不稳定条件对比分析[J].陕西气象, 2:17-21.
[29]Xu L T, Zhang Y J, Wang F, et al, 2012. Coupling of electrification and discharge processes with WRF model and its preliminary verification[J]. Chinese J Atmos Sci, 36(5):1041-1052.<br/>徐良韬, 张义军, 王飞, 等, 2012.雷暴起电和放电物理过程在WRF模式中的耦合及初步检验[J].大气科学, 36 (5):1041-1052.
[30]Xu X T, Liu R F, Guo D M, 2012. Cause analysis of a continuous severe convective weather in Shaanxi[J]. Meteor Mon, 38(5):533-542.<br/>许新田, 刘瑞芳, 郭大梅, 等, 2012.陕西一次持续性强对流天气过程的成因分析[J].气象, 38(5):533-542.
[31]Yan M H, Guo C M, Ge Z M, 1996. Numerical study of cloud dynamic-electrification in an axisymmetric, time-dependent cloud model. Ⅰ. Theory and model[J]. Chinese J Geophy, 39 (1):52-64.<br/>言穆弘, 郭昌明, 葛正谟, 1996.积云动力和电过程二维模式研究-Ⅰ理论和模式[J].地球物理学报, 39(1):52-64.
[32]Yuan T, Qie X S, 2010. TRMM based study of lightning activity and its relationship with precipitation structure of a squall line in South China[J]. Chinese J Atmos Sci, 34(1):58-70.<br/>袁铁, 郄秀书, 2010.基于TRMM卫星对一次华南飑线的闪电活动及其与降水结构的关系研究[J].大气科学, 34(1):58-70.
[33]Zhang T F, Yin L Y, Zhang J, et al, 2013. Evolution and cloud-to-ground lightning features of two mesoscale convective thunder storm systems in Yunnan[J]. J Appl Meteor Sci, 24(2):207-218.<br/>张腾飞, 尹丽云, 张杰, 等, 2013.云南两次中尺度对流雷暴系统演变和地闪特征[J].应用气象学报, 24(2):207-218.
[34]Zhang T L, Yang J, Chu R Z, et al, 2012. Distribution of precipitation particle and electrical characteristic of thunderstorm in Pingliang Region[J]. Plateau Meteor, 31(4):1091-1099.<br/>张廷龙, 杨静, 楚荣忠, 等, 2012.平凉一次雷暴云内的降水粒子分布及其电学特征的探讨[J].高原气象, 31(4):1091-1099.
[35]Zhang Y B, Ma X H, Ran L K, et al, 2016. Characteristic analysis on two regional rainstorms at Guanzhong in early summer[J]. Plateau Meteor, 35(3):708-725. DOI:10. 7522/j.issn. 1000-0534. 2015. 00014.<br/>张雅斌, 马晓华, 冉令坤, 等, 2016.关中地区两次初夏区域性暴雨过程特征分析[J].高原气象, 35(3):708-725.
[36]Zhang Y J, Yan M H, Liu X S, 1999. Simulating study of discharge process in the thunderstorm[J]. Chinese Science Bulletin, 44(12):1322-1325.<br/>张义军, 言穆弘, 刘欣生, 1999.雷暴中放电过程的模式研究[J].科学通报, 44(12):1322-1325.
[37]Zheng D, Zhang Y J, Lü W T, et al, 2005. Atmospheric instablity parameters and forecasting of ligthning activity[J]. Plateau Meteor, 24 (2):196-202.<br/>郑栋, 张义军, 吕伟涛, 等, 2005.大气不稳定度参数与闪电活动的预报[J].高原气象, 24(2):196-202.
Outlines

/