A Numerical Study of Impact of Topography on Intensity and Pattern of Sea Breeze Precipitation over the Hainan Island

  • WANG Ying ,
  • MIAO Junfeng ,
  • SU Tao
Expand
  • College of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;Hunan Meteorological Observatory, Changsha 410118, Hunan, China

Received date: 2016-05-23

  Online published: 2018-02-28

Abstract

Sea Breeze is a common local circulation driven by differential heating between land and sea, which has been studied observationally, experimentally, theoretically and numerically for a long time. Previous studies have shown that sea breeze can be strongly influenced by complex inland topography, theoretically from dynamic and thermodynamic aspects. The studied area Hainan Island which has high occurrence of sea breeze also has special terrain characteristics, therefore the sea breeze is different from other coastal areas, and the sea breeze precipitation is one of the most important precipitation regimes in Hainan according to previous studies. In this paper, the sea breeze precipitation over the Hainan Island on May 31, 2013 was simulated by high-resolution numerical model WRF, the impact of topography on intensity and pattern of local sea breeze precipitation was studied by designing different topography experiments. The results show that, WRF model can simulate the surface wind and sea breeze precipitation intensity reasonably, and the time evolution of simulation and actual precipitation generally approaches well. With the continuous development of sea-breeze circulation, the timing and placement of convective precipitation as well as the sea breeze front almost move inland in phase, and the precipitation area mainly distribute in the front of Li Mu Mountain, which is located in the southwest of studied area. The rainfall structural characteristics are closely associated with the topography feature which is high and upright in the middle area while relatively lower all around in the Hainan Island, the dynamic and thermodynamic influence of terrain has alternate evolution in the whole process of sea breeze precipitation. During 11:00-16:00 BST, precipitation was mainly caused by single sea breeze front. The primary mechanism was thermal enhancement duing to the lower height of topography at this stage, and the sea-land thermal flux difference which essentially drive the development of sea breeze is more notable with higher terrain height. While during 17:00-21:00 BST, precipitation was mainly caused by the collision of eastern and western sea breeze front, with the inland propagation of sea breeze front, terrain blocking effect took dominant role as elevation increases gradually, but if the terrain height increases to a certain degree, the blocking effect can rapidly weaken sea breeze circulation and thus reduce rainfall intensity. Nevertheless, all the effects mentioned above depends on the inhomogeneous character of underlying surface, the combination of topography and vegetation can produce larger difference of the land surface energy distribution, and consequently lead to greater influence on local precipitation.

Cite this article

WANG Ying , MIAO Junfeng , SU Tao . A Numerical Study of Impact of Topography on Intensity and Pattern of Sea Breeze Precipitation over the Hainan Island[J]. Plateau Meteorology, 2018 , 37(1) : 207 -222 . DOI: 10.7522/j.issn.1000-0534.2016.00135

References

[1]Abbs D J, Physick W L, 1992. Sea-breeze observations and modelling:A review[J]. Aust Meteorol Mag, 41:7-19.
[2]André J C, Bougeault P, Mahfouf J F, et al, 1989. Impact of forests on mesoscale meteorology[J]. Philos T Roy Soc B, 324(1223):407-422.
[3]Barthlott C, Kirshbaum D J, 2013. Sensitivity of deep convection to terrain forcing over Mediterranean Islands[J]. Quart J Roy Meteor Soc, 139(676):1762-1779.
[4]Borne K, Chen D, Nunez M, 1998. A method for finding sea breeze days under stable synoptic conditions and its application to the Swedish west coast[J]. Int J of Climatol, 18(8):901-914.
[5]Crosman E T, Horel J D, 2010. Sea and lake breezes:A review of numerical studies[J]. Bound Lay Meteor, 137(1):1-29.
[6]Findell K L, Eltahir E A B, 2003. Atmospheric controls on soil moisture-boundary layer interactions. Part Ⅰ:Framework development[J]. J Hydrometeorol, 4(3):552-569.
[7]Fovell R G, 2005. Convective initiation ahead of the sea-breeze front[J]. Mon Wea Rev, 133(1):264-278.
[8]Hill C M, Fitzpatrick P J, Corbin J H, et al, 2010. Summertime precipitation regimes associated with the sea breeze and land breeze in southern Mississippi and eastern Louisiana[J]. Wea Forecasting, 25(6):1755-1779.
[9]Huang Q Q, Cai X H, Song Y, et al, 2016. A numerical study of sea breeze and spatiotemporal variation in the coastal atmospheric boundary layer at Hainan Island, China[J]. Bound Lay Meteor, 161(3):543-560.
[10]Hughes M, Hall A, Fovell R G, 2009. Blocking in areas of complex topography and its influence on rainfall distribution[J]. J Atmos Sci, 66(2):508-518.
[11]Kala J, Lyons T J, Abbs D J, et al, 2010. Numerical simulations of the impacts of land-cover change on a southern sea breeze in south-west western Australia[J]. Bound Lay Meteor, 135(3):485-503.
[12]Kruit R J W, Holtslag A A M, Tijm A B C, 2004. Scaling of the sea-breeze strength with observations in the Netherlands[J]. Bound Lay Meteor, 112(2):369-380.
[13]Liang Z M, Wang D H, 2015. Numerical study of the evolution of a sea-breeze front under two environmental flows[J]. J Meteor Res, 29(3):446-466.
[14]Mahrer Y, Pielke R A, 1977. The effects of topography on sea and land breezes in a two-dimensional numerical model[J]. Mon Wea Rev, 105(9):1151-1162.
[15]Miao J F, Kroon L J M, De Arellano J V G, et al, 2003. Impacts of topography and land degradation on the sea breeze over eastern Spain[J]. Meteor Atmos Phys, 84(3-4):157-170.
[16]Miao J F, Wyser K, Chen D, et al, 2009. Impacts of boundary layer turbulence and land surface process parameterizations on simulated sea breeze characteristics[J]. Ann Geophys, 27(6):2303-2320.
[17]Miller S T K, Keim B D, Talbot R W, et al, 2003. Sea breeze:Structure, forecasting, and impacts[J]. Rev geophys, 41(3):1-31.
[18]Nitis T, Kitsiou D, Klaic Z B, et al, 2005. The effects of basic flow and topography on the development of the sea breeze over a complex coastal environment[J]. Quart J Roy Meteor Soc, 131(605):305-327.
[19]Ramis C, Romero R, 1995. A first numerical simulation of the development and structure of the sea breeze on the Island of Mallorca[J]. Ann Geophys, 13(9):351-363.
[20]Roe G H, 2005. Orographic precipitation[J]. Annu Rev Earth Pl Sc, 33:645-671.
[21]Simpson M, Warrior H, Raman S, et al, 2007. Sea-breeze-initiated rainfall over the east coast of India during the Indian southwest monsoon[J]. Nat Hazards, 42(2):401-413.
[22]Skamarock W C, Klemp J B, Dudhia J, et al, 2008. A description of the advanced research WRF version 3[J]. NCAR Technical Note NCAR/TN-475+STR. DOI:10. 5065/D68S4MVH.
[23]TerMaat H W, Moors E J, Hutjes R W A, et al, 2013. Exploring the impact of land cover and topography on rainfall maxima in the Netherlands[J]. J Hydrometeorol, 14(2):524-542.
[24]Tu X L, Zhou M Y, Sheng S H, 1993. The mesoscale numerical simulation of the flow field of the Hainan Island and the Leizhou Penisula[J]. Acta Oceanologica Sinica, 12(2):219-235.
[25]Wang D, Miao J F, Tan Z M, 2013. Impacts of topography and land cover change on thunderstorm over the Huangshan (Yellow Mountain) area of China[J]. Nat Hazards, 67(2):675-699.
[26]Wang D, Miao J F, Zhang D L, 2015. Numerical simulations of local circulation and its response to land cover changes over the Yellow Mountains of China[J]. J Meteor Res, 29(4):667-681.
[27]Wilson J W, Schreiber W E, 1986. Initiation of convective storms at radar-observed boundary-layer convergence lines[J]. Mon Wea Rev, 114(12), 2516-2536.
[28]Zhao Y C, 2014. Diurnal variation of rainfall associated with tropical depression in South China and its relationship to land-sea contrast and topography[J]. Atmosphere, 5(1):16-44.
[29]Fu X H, Li X S, Lü N P, et al, 1991. Three dimensional numerical model of the sea and land breeze with complex terrain[J]. Quart J Appl Meteor, 2(2):113-119.<br/>付秀华, 李兴生, 吕乃平, 等, 1991.复杂地形条件下三维海陆风数值模拟[J].应用气象学报, 2(2):113-119.
[30]Jin H, Wang Y C, 1991. Numerical simulation of three-dimensional sea-land breeze[J]. Chinese J Atmos Sci, 15(5):25-32.<br/>金皓, 王彦昌, 1991.三维海陆风的数值模拟[J].大气科学, 15(5):25-32.
[31]Liao F, Hong Y C, Zheng G G, 2007. Review of orographic influences on surface precipitation[J]. Meteor Sci Technol, 35(3):309-316.<br/>廖菲, 洪延超, 郑国光, 2007.地形对降水的影响研究概述[J].气象科技, 35(3):309-316.
[32]Liu Y F, Long X, Wang H, 2015. Numerical simulation studies on a rainstorm in central western Shaanxi Province[J]. Plateau Meteor, 34(2):378-388. DOI:10. 7522/j. issn. 1000-0534. 2013. 00182.<br/>刘燕飞, 隆霄, 王晖, 2015.陕西中西部地区一次暴雨过程的数值模拟研究[J].高原气象, 34(2):378-388.
[33]Miao J F, 2014. An overview of numerical studies of interaction of urban heat island and sea breeze circulations[J]. Transactions Atmos Sci, 37(4):521-528.<br/>苗峻峰, 2014.城市热岛和海风环流相互作用的数值模拟研究进展[J].大气科学学报, 37(4):521-528.
[34]Mu J L, Li Z C, Chen Y, et al, 2014. Feature analyses of mesoscale convective system of a heavy rainfall in the central Shaanxi Plain[J]. Plateau Meteor, 33(1):148-161. DOI:10. 7522/j. issn. 1000-0534. 2013. 00049.<br/>慕建利, 李泽椿, 谌芸, 等, 2014.一次陕西关中强暴雨中尺度系统特征分析[J].高原气象, 33(1):148-161.
[35]Su T, Miao J F, Cai Q B, 2016a. A numerical simulation of sea breeze thunderstorm structure over the Hainan Island[J]. Chinese J Geophys, 59(1):59-78.<br/>苏涛, 苗峻峰, 蔡亲波, 2016a.海南岛海风雷暴结构的数值模拟[J].地球物理学报, 59(1):59-78.
[36]Su T, Miao J F, Han F R, 2016b. An overview of observational and numerical studies of sea breeze thunderstorms[J]. Meteor Sci Technol, 44(1):47-54.<br/>苏涛, 苗峻峰, 韩芙蓉, 2016b.海风雷暴的观测分析和数值模拟研究进展[J].气象科技, 44(1):47-54.
[37]Wang J, Miao J F, Feng W, 2016. An observational analysis of sea breeze characteristics over the Hainan Island[J]. Sci Meteor Sinica, 36(2):244-255.<br/>王静, 苗峻峰, 冯文, 2016.海南岛海风演变特征的观测分析[J].气象科学, 36(2):244-255.
[38]Wang Y, Yu L L, Zhu N N, et al, 2011. Sea breeze front in Bohai Bay and thunderstorm weather[J]. Plateau Meteor, 30(1):245-251.<br/>王彦, 于莉莉, 朱男男, 等, 2011.渤海湾海风锋与雷暴天气[J].高原气象, 30(1):245-251.
[39]Wang Y, Gao S T, Liang Z M, 2014. Analysis on the observation and simulation of thunderstorms triggered by sea breeze front in Bohai Bay[J]. Plateau Meteor, 33(3):848-854. DOI:10. 7522/j. issn. 1000-0534. 2013. 00030.<br/>王彦, 高守亭, 梁钊明, 2014.渤海湾海风锋触发雷暴的观测和模拟分析[J].高原气象, 33(3):848-854.
[40]Wang Y H, Miao J F, Cai Q B, 2016. Numerical simulation on the 3-D structure of sea breeze over the Hainan Island[J]. J Trop Meteor, 32(1):109-124.<br/>王语卉, 苗峻峰, 蔡亲波, 2016.海南岛海风三维结构的数值模拟[J].热带气象学报, 32(1):109-124.
[41]Yin D P, Wu H Y, Zhang B, 2010. Analysis on a severe convective weather triggered by sea breeze front[J]. Plateau Meteor, 29(5):1261-1269.<br/>尹东屏, 吴海英, 张备, 2010.一次海风锋触发的强对流天气分析[J].高原气象, 29(5):1261-1269.
[42]Zhai G Q, Gao K, Yu Z X, et al, 1995. Numerical simulation of the effects of mesoscale topography in a heavy rain process[J]. Chinese J Atmos Sci, 19(4):475-480.<br/>翟国庆, 高坤, 俞樟孝, 等, 1995.暴雨过程中中尺度地形作用的数值试验[J].大气科学, 19(4):475-480.
[43]Zhai W Q, Li G J, Sun B, et al, 1997. Season wind fileds of mesoscale circulation in Hainan Island[J]. J Trop Meteor, 13(4):315-322.<br/>翟武全, 李国杰, 孙斌, 等, 1997.海南岛附近四季风场的中尺度环流[J].热带气象学报, 13(4):315-322.
[44]Zhang Y B, Ma X H, Ran L K, et al, 2016. Characteristic analysis on two regional rainstorms at Guanzhong in early summer[J]. Plateau Meteor, 35(3):708-725. DOI:10. 7522/j. issn. 1000-0534. 2015. 00014.<br/>张雅斌, 马晓华, 冉令坤, 等, 2016.关中地区两次初夏区域性暴雨过程特征分析[J].高原气象, 35(3):708-725.
[45]Zhang Z Z, Cai X H, Song Y, et al, 2014. Statistical characteristics and numerical simulation of sea land breezes in Hainan Island[J]. J Trop Meteor, 30(2):270-280.<br/>张振州, 蔡旭晖, 宋宇, 等, 2014.海南岛地区海陆风的统计分析和数值模拟研究[J].热带气象学报, 30(2):270-280.
[46]Zhu Q G, Zhou J, Wang Z M, et al, 1983. Features of temperature and pressure fields with respect to sea/land breeze and precipitation along the coast of South China during May[J]. Journal of Nanjing Institute of Meteorology, 6(2):150-158.<br/>朱乾根, 周军, 王志明, 等, 1983.华南沿海五月份海陆风温压场特征与降水[J].南京气象学院学报, 6(2):150-158.
Outlines

/