Coupling Analysis between Canopy and Atmosphere that Influenced Transpiration of a Populus Euphratica Oliv. Forest in the Lower Reach of Heihe River

  • GAO Guanlong ,
  • FENG Qi ,
  • ZHANG Xiaoyou ,
  • YU Tengfei
Expand
  • Shanxi University, Taiyuan 030006, Shanxi, China;Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China

Received date: 2016-12-01

  Online published: 2018-02-28

Abstract

The degree of coupling between the plant canopy and atmosphere indicates the exchanging ability of momentum, energy and mass between the two systems. Based on the measured data of tree characteristics, sap flow and environmental factors in 2014 and the empirical formulae, we calculated the transpiration rate, stomatal conductance and decoupling coefficient of the canopy, and analyzed the diurnal and seasonal features of all the three parameters. Results indicated that:(1) the value of decoupling coefficient peaked at noon and minimized in the morning and evening, and this is mainly due to the weak radiation and lower stomatal conductance in the morning and evening. However, the canopy stomatal conductance peaked at noon, and the value of decoupling coefficient maximized accordingly. (2) The seasonal variation of the decoupling coefficient is similar to that of the canopy stomatal conductance. It increased at first and then decreased, then increased slightly and decreased at last. We inferred the correlation between the canopy of the Populus euphratica forest and atmosphere, result showed that the canopy of P. euphratic was highly coupled with the atmosphere. Though our study area is located in the Ejin oasis where is extremely dry, the supplement of the surface water from the upstream of Heihe River ensured the water that P. euphratica needed. The water and aerodynamic status are both good, and the transpiration is mainly controlled by stoma.

Cite this article

GAO Guanlong , FENG Qi , ZHANG Xiaoyou , YU Tengfei . Coupling Analysis between Canopy and Atmosphere that Influenced Transpiration of a Populus Euphratica Oliv. Forest in the Lower Reach of Heihe River[J]. Plateau Meteorology, 2018 , 37(1) : 234 -239 . DOI: 10.7522/j.issn.1000-0534.2017.00017

References

[1]Cienciala E, Kuera J, Malmer A, 2000. Tree sap flow and stand transpiration of two Acacia mangium plantations in Sabah, Borneo[J]. J Hydrology, 236(1):109-120.
[2]Granier A, Biron P, Lemoine D, 2000. Water balance, transpiration and canopy conductance in two beech stands[J]. Agricultural and Forest Meteorology, 100(4):291-308.
[3]Herbst M, 1995. Stomatal behaviour in a beech canopy:an analysis of Bowen ratio measurements compared with porometer data[J]. Plant, Cell Environ, 18(9):1010-1018.
[4]Jarvis P G, McNaughton K, 1986. Stomatal control of transpiration:scaling up from leaf to region[J]. Adv Ecological Res, 15(1):1-49.
[5]Kumagai T O, Saitoh T M, Sato Y, et al, 2004. Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak, Borneo:dry spell effects[J]. J Hydrology, 287(1):237-251.
[6]Magnani F, Leonardi S, Tognetti R, et al, 1998. Modelling the surface conductance of a broad-leaf canopy:effects of partial decoupling from the atmosphere[J]. Plant, Cell Environ, 21(8):867-879.
[7]Meinzer F, Andrade J, Goldstein G, et al, 1997. Control of transpiration from the upper canopy of a tropical forest:the role of stomatal, boundary layer and hydraulic architecture components[J]. Plant, Cell Environ, 20(10):1242-1252.
[8]Meinzer F, Goldstein G, Holbrook N, et al, 1993. Stomatal and environmental control of transpiration in a lowland tropical forest tree[J]. Plant Cell Environ, 16(4):429-429.
[9]Sellers P, Dickinson R, Randall D, et al, 1997. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere[J]. Science, 275(5299):502-509.
[10]Si J H, Feng Q, Zhang X Y, et al, 2007. Sap flow of Populus euphratica in a desert riparian forest in an extreme arid region during the growing season[J]. Journal of Integrative Plant Biology, 49(4):425-436.
[11]Steduto P, Hsiao T C, 1998. Maize canopies under two soil water regimes:Ⅲ. Variation in coupling with the atmosphere and the role of leaf area index[J]. Agricultural and Forest Meteorology, 89(3):201-213.
[12]Wullschleger S D, Wilson K B, Hanson P J, 2000. Environmental control of whole-plant transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple trees[J]. Agricultural and Forest Meteorology, 104(2):157-168.
[13]Bai F, Li W P, Li Z H, 2008. Analysis on the main causes resulting in vegetation degeneration in the Heihe river basin[J]. Arid Zone Research, 25(2):219-224.<br/>白福, 李文鹏, 李志恒, 2008.黑河流域植被退化的主要原因分析[J].干旱区研究, 25(2):219-224.
[14]Dou J X, Zhang Y P, Yu G R, et al, 2007. Inter-annual and seasonal variations of energy and water vapour fluxes above a tropical seasonal rain forest in Xishuangbanna, SW China[J]. Acta Ecologca Sinica, 27(8):3099-3109.<br/>窦军霞, 张一平, 于贵瑞, 等, 2007.西双版纳热带季节雨林水热通量[J].生态学报, 27(8):3099-3109.
[15]Si J H, Chang Z Q, Su Y H, et al, 2008. Stomatal conductance characteristics of Populus euphratica leaves and response to environmental factors in the extreme arid region[J]. Acta Botanica Boreali-Occidentalia Sinica, 28(1):125-130.<br/>司建华, 常宗强, 苏永红, 等, 2008.胡杨叶片气孔导度特征及其对环境因子的响应[J].西北植物学报, 28(1):125-130.
[16]Si J H, Feng Q, Zhang X Y, et al, 2007. Sap flow of Populus euphratica in desert riparian forest in extreme arid region during the growing season[J]. J Desert Res, 27(3):442-447.<br/>司建华, 冯起, 张小由, 等, 2007.极端干旱区荒漠河岸林胡杨生长季树干液流变化[J].中国沙漠, 27(3):442-447.
[17]Su L T, Adili T, Wang X Y, et al, 2014. Transpiration model of Populous euphratica in the lower reaches of Tarim River under groundwater fluctuation[J]. Arid Land Geograp, 37(5):916-921.<br/>苏里坦, 阿迪力·吐拉尔别克, 王兴勇, 等, 2014.地下变水位条件下塔里木河下游河岸胡杨林蒸腾模型[J].干旱区地理, 37(5):916-921.
[18]Su Y H, Zhu G F, Feng Q, et al, 2008. The simulation of leaf stomatal conductance of Populus euphratica in desert riparian forest in Ejin[J]. Acta Botanica Boreali-Occidentalia Sinica, 28(7):1434-1439.<br/>苏永红, 朱高峰, 冯起, 等, 2008.额济纳荒漠河岸胡杨林叶片气孔导度与微环境因子关系的模拟研究[J].西北植物学报, 28(7):1434-1439.
[19]Su Y H, Zhu G F, Feng Q, et al, 2009. Numerical simulation of vertical soil water movement in unsaturated soils during evaporation:A case study of desert riparian Populus euphratica forest in Ejin[J]. J Desert Res, 29(2):236-240.<br/>苏永红, 朱高峰, 冯起, 等, 2009.蒸发条件下一维垂向非饱和土壤水分运动的数值模拟——以额济纳荒漠河岸胡杨林为例[J].中国沙漠, 29(2):236-240.
[20]Wang G X, Cheng G D, 2002. Water demand of eco-system and estimate method in arid inland river basins[J]. J Desert Res, 22(2):129-134.<br/>王根绪, 程国栋, 2002.干旱内陆流域生态需水量及其估算——以黑河流域为例[J].中国沙漠, 22(2):129-134.
[21]Yang F L, Zhou G S, 2010. Characteristics and driving factors of energy budget over a temperate desert steppe in Inner Mongolia[J]. Acta Ecologica Sinica, 30(21):5769-5780.<br/>阳伏林, 周广胜, 2010.内蒙古温带荒漠草原能量平衡特征及其驱动因子[J].生态学报, 30(21):5769-5780.
[22]Zhang X Y, Kang E S, Si J h, et al, 2006. Stem sap flow of individual plant of populus euphratica and its conversion to forest water consumption[J]. Scientia Silvae Sinicae, 42(7):28-32.<br/>张小由, 康尔泗, 司建华, 等, 2006.胡杨蒸腾耗水的单木测定与林分转换研究[J].林业科学, 42(7):28-32.
[23]Zhang Y Q, Liu C M, 2002. Coupling analysis of water vapour flux between canopy and atmosphere in a farmland[J]. Journal of Agricultural University of Hebei, 25(3):28-32.<br/>张永强, 刘昌明, 2002.农田冠层与大气水汽通量耦合分析[J].河北农业大学学报, 25(3):28-32.
Outlines

/