[1]Armstrong R L, Brodzik M J, 2001.Recent Northern Hemisphere snow extent:A comparison of data derived from visible and microwave satellite sensors[J]. Geophys Res Lett, 28(19):3673-3676.DOI:10.1029/2000GL012556.
[2]Chang A T C, Foster J L, Hall D K, 1987.Nimbus-7 SMMR derived global snow cover parameters[J]. Annals of glaciology, 9(1):39-44.
[3]Chang A T C, Gloersen P, Schmugge T, et al, 1976.Microwave emission from snow and glacier ice[J]. J Glaciol, 16(74):23-39.
[4]Che T, Xin L, Jin R, et al, 2008.Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 49(1):145-154.DOI:10.3189/172756408787814690.
[5]Dai L, Che T, 2009.Cross-platform calibration of SMMR, SSM/I and AMSR-E passive microwave brightness temperature[C]//Proc. SPIE 7841, Sixth International Symposium on Digital Earth: Data Processing and Applications, 7841: 784103.DOI: <a href="http://dx.doi.org/10.1117/12.873150" target="_blank">10.1117/12.873150</a>.
[6]Derksen C, Walker A, Goodison B, 2005.Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada[J]. Remote Sens Environ, 96(3):315-327.DOI:10.1016/j.rse. 2005.02.014.
[7]Dietz A J, Kuenzer C, Gessner U, et al, 2012.Remote sensing of snow-a review of available methods[J]. Int J Remote Sens, 33(13):4094-4134.DOI:10.1080/01431161.2011.640964.
[8]Goodison B E, 1989.Determination of areal snow water equivalent on the Canadian prairies using passive microwave satellite data[C]//Geoscience and Remote Sensing Symposium, 1989.IGARSS'89.12th Canadian Symposium on Remote Sensing., 1989 International. IEEE, 3: 1243-1246.DOI: <a href="http://dx.doi.org/10.1109/IGARSS.1989.576061" target="_blank">10.1109/IGARSS.1989.576061</a>.
[9]Grody N C, Basist A N, 1996.Global identification of snowcover using SSM/I measurements[J]. IEEE Trans Geosci Remote Sens, 34(1):237-249.DOI:10.1109/36.481908.
[10]Jain S K, Goswami A, Saraf A K, 2008.Accuracy assessment of MODIS, NOAA and IRS data in snow cover mapping under Himalayan conditions[J]. Int J Remote Sens, 29(20):5863-5878.DOI:10.1080/01431160801908129.
[11]Li R, Min Q, Lin B, 2009.Estimation of evapotranspiration in a mid-latitude forest using the Microwave Emissivity Difference Vegetation Index (EDVI)[J]. Remote Sens Environ, 113(9):2011-2018.DOI:10.1016/j.rse. 2009.05.007.
[12]Li R, Min Q, 2013.Dynamic response of microwave land surface properties to precipitation in Amazon rainforest[J]. Remote Sens Environ, 133:183-192.DOI:10.1016/j.rse. 2013.02.001.
[13]Lin B, Minnis P, 2000.Temporal variations of land surface microwave emissivities over the atmospheric radiation measurement program southern great plains site[J]. J Appl Meteor, 39(7):1103-1116.DOI:10.1175/1520-0450(2000)039<1103:Tvolsm>2.0.Co;2.
[14]Liu G S, 1998.A fast and accurate model for microwave radiance calculations[J]. J Meteor Soc Japan, 76, 335-343.
[15]Min Q, Lin B, Li R, 2010.Remote sensing vegetation hydrological states using passive microwave measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(1):124-131.DOI:10.1109/JSTARS. 2009.2032557.
[16]Min Q, Lin B, 2006a. Determination of spring onset and growing season leaf development using satellite measurements[J]. Remote Sens Environ, 104(1):96-102.DOI:10.1016/j.rse. 2006.05.006.
[17]Min Q, Lin B, 2006b. Remote sensing of evapotranspiration and carbon uptake at Harvard Forest[J]. Remote Sens Environ, 100(3):379-387.DOI:10.1016/j.rse. 2005.10.020.
[18]Neale C M U, Mcfarland M J, Chang K, 1990.Land-surface-type classification using microwave brightness temperatures from the Special Sensor Microwave/Imager[J]. IEEE Trans Geosci Remote Sens, 28(5):829-838.DOI:10.1109/36.58970.
[19]Pu Z, Xu L, 2009.MODIS/Terra observed snow cover over the Tibet Plateau:distribution, variation and possible connection with the East Asian Summer Monsoon (EASM)[J]. Theor Appl Climatol, 97(3-4):265-278.DOI:10.1007/s00704-008-0074-9.
[20]Qiu Y, Shi J, Jiang L, et al, 2007.Study of atmospheric effects on AMSR-E microwave brightness temperature over Tibetan Plateau[C]//Geoscience and remote sensing symposium, 2007.IGARSS 2007.IEEE International. 1873-1876.DOI: <a href="http://dx.doi.org/10.1109/IGARSS.2008.4779083" target="_blank">10.1109/IGARSS.2008.4779083</a>.
[21]Savoie M H, Armstrong R L, Brodzik M J, et al, 2009.Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau[J]. Remote Sens Environ, 113(12):2661-2669.DOI:10.1016/j.rse. 2009.08.006.
[22]Shi J C, Du Y, Du J Y, et al, 2012.Progresses on microwave remote sensing of land surface parameters[J]. Science China Earth Sciences, 55(7):1052-1078.DOI:10.1007/s11430-012-4444-x.
[23]Tait A B, 1998.Estimation of snow water equivalent using passive microwave radiation data[J]. Remote Sens Environ, 64(3):286-291.DOI:10.1109/IGARSS. 1996.516870.
[24]Tedesco M, Wang J R, 2006.Atmospheric correction of AMSR-E brightness temperatures for dry snow cover mapping[J]. IEEE Geosci Remote Sens Lett, 3(3):320-324.DOI:10.1109/LGRS. 2006.871744.
[25]Ulaby F T, Moore R K, Fung A K, 1981.Microwave remote sensing:Active and passive. volume 1-microwave remote sensing fundamentals and radiometry[M]. Reading M A:Addison-Wesley.
[26]Wang J R, Manning W, 2003.Near concurrent MIR, SSM/T-2, and SSM/I observations over snow-covered surfaces[J]. Remote Sens Environ, 84(3):457-470.DOI:10.1016/S0034-4257(02)00134-7.
[27]Wang J R, Tedesco M, 2007.Identification of atmospheric influences on the estimation of snow water equivalent from AMSR-E measurements[J]. Remote Sens Environ, 111(2):398-408.DOI:10.1016/j.rse. 2006.10.024.
[28]Wang X, Doherty S J, Huang J P, 2013.Black carbon and other light-absorbing impurities in snow across Northern China[J]. J Geophys Res Atmos, 118, 1471-1492.DOI:10.1029/2012jd018291.
[29]Wang X, Xu B Q, Ming J, 2014.An Overview of the Studies on Black Carbon and Mineral Dust Deposition in Snow and Ice Cores in East Asia[J]. J Meteorol Res, 28, 354-370, DOI:10.1007/S13351-014-4005-7.
[30]Wang X, Pu W, Zhang X Y, et al, 2015.Water-soluble ions and trace elements in surface snow and their potential source regions across northeastern China[J]. Atmos Environ, 114, 57-65.DOI:10.1016/J.Atmosenv. 2015.05.012.
[31]Zhao H, Fernandes R, 2009.Daily snow cover estimation from advanced very high resolution radiometer polar pathfinder data over Northern Hemisphere land surfaces during 19822004[J]. J Geophys Res:Atmospheres, 114(D5). DOI:10.1029/2008JD011272.
[32]Che T, Li X, Gao F, 2004.Estimation of snow water equivalent in the tibetan plateau using passive microwave remote sensing data (SSM/I)[J]. Journal of Glaciology and Geocryology, 3:19.<br/>车涛, 李新, 高峰, 2004.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土, 26(3):363-368.
[33]Feng L, Zhong L, Ma Y M, et al, 2016.Estimation of soil heat flux over the northern Qinghai-Xizang Plateau based on insitu soil temperature and moisture data[J]. Plateau Meteor, 35(2):297-308.DOI:10.7522/j.issn. 1000-0534.2015.00006.<br/>冯璐, 仲雷, 马耀明, 等, 2016.基于土壤温湿度观测资料估算藏北高原地区土壤热通量[J].高原气象, 35(2):297-308.
[34]Jiang L M, Wang P, Zhang L X, et al, 2014.Improvement of snow depth retrieval for FY3B-MWRI in China[J]. Science China:Earth Sciences, 44(3):531-547.DOI:10.1007/s11430-013-4798-8.<br/>蒋玲梅, 王培, 张立新, 等, 2014.FY3B-MWRI中国区域雪深反演算法改进[J].中国科学:地球科学, 44(3):531-547.
[35]Li D H, Wen L J, Long X, et al, 2017.Observation study on effects of snow cover on local micro meteorological characteristics in Maqu[J]. Plateau Meteor, 36(2):330-339.DOI:10.7522/j.issn. 1000-0534.2016.00074.<br/>李丹华, 文莉娟, 隆霄, 等, 2017.积雪对玛曲局地微气象特征影响的观测研究[J].高原气象, 36(2):330-339.
[36]Qiu Y B, Shi L J, Shi J C, et al, 2016.Atmospheric influences analysis on the satellite passive microwave remote sensing[J]. Spectroscopy and Spectral Analysis, 36(2):310-315.DOI:10.1109/IGARSS. 2015.7326276.<br/>邱玉宝, 石利娟, 施建成, 等, 2016.大气对星载被动微波影响分析研究[J].光谱学与光谱分析, 36(2):310-315.
[37]Wang S J, 2017.Progresses in variability of snow cover over the Qinghai-Tibetan Plateau and its impact on water resources in China[J]. Plateau Meteor, 36(5):1153-1164.DOI:10.7522/j.issn. 1000-0534.2016.00117.<br/>王顺久, 2017.青藏高原积雪变化及其对中国水资源系统影响研究进展[J].高原气象, 36(5):1153-1164.
[38]Wang Y, Bo Y, Wang C H, 2016.Relations of cloud amount to asymmetric diurnal temperature change in Central and Eastern Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(4):908-919.DOI:10.7522/j.issn. 1000-0534.2015.00033.<br/>王艺, 伯玥, 王澄海, 2016.青藏高原中东部云量变化与气温的不对称升高[J].高原气象, 35(4):908-919.
[39]Zhou L M, Chen H S, Peng L X, et al, 2016.Possible connection between interdecadal variations of snow depth in winter and spring over Qinghai-Xizang Plateau and South Asia High in summer[J]. Plateau Meteor, 35(1):13-23.DOI:10.7522/j.issn. 1000-0534.2014.00152.<br/>周利敏, 陈海山, 彭丽霞, 等, 2016.青藏高原冬春雪深年代际变化与南亚高压可能联系[J].高原气象, 35(1):13-23.
[40]Zhang Y L, Li B Y, Zheng D, 2002.A discussion on the boundary and area of the Tibetan Plateau in China[J]. Geographical Research, 21(1):1-8.DOI:10.11821/yj2002010001.<br/>张镱锂, 李炳元, 郑度, 2002.论青藏高原范围与面积[J].地理研究, 21(1):1-8.
[41]Zheng Y Q, Qian Y P, Miao M Q, et al, 2000.Effect of the Tibetan Plateau snow cover on China summer monsoon climate[J]. Chinese J Atmos Sci, 24(6):761-774.DOI:10.3878/j.issn. 1006-9895.2000.06.04.<br/>郑益群, 钱永甫, 苗曼倩, 等, 2000.青藏高原积雪对中国夏季风气候的影响[J].大气科学, 24(6):761-774.