Variability of NDVI with Elevation and Precipitation in Yarlung Zangbo River Basin

  • LIU Xiaowan ,
  • PENG Dingzhi ,
  • XU Zongxue
Expand
  • College of Water Sciences, Beijing Normal University, Beijing 100875, China;Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing 100875, China

Received date: 2017-02-27

  Online published: 2018-04-28

Abstract

Spatial discrepancy of vegetation is mainly derived from terrain abnormality and uneven distribution of precipitation. Yarlung Zangbo River basin, situated in the Tibetan autonomous region with great altitude difference, was selected as the case study. With use of moving t mutation test, tendency value computation, Pearson correlation analysis method, spatial and temporal pattern of NDVI and its relationship with elevation and precipitation in the Yarlung Zangbo River basin were investigated by combining the datasets of NDVI, precipitation and elevation within 0.25°×0.25° pixels. The results show that:(1) distribution of NDVI heavily depends on elevation and the relationship between NDVI and elevation is apparently negative with tendency value of -0.000 18 m-1. NDVI of pixels less than 3 003 m and over 5 843 m exhibited in linearly reduction with the elevation increase, while the magnitudes of NDVI in pixels with elevation between 3 003 m and 5 843 m greatly differ with the fitted NDVI using elevation; (2) According to three elevation bands divided by 3 767 m and 5 051 m, the magnitude extent of NDVI are 0.65~0.88, 0.17~0.49 and 0.09~0.24, respectively; (3) Vegetation growth within 12 months can be grossly divided into three phases including February to May, June to September and October to next January; (4) An increasing tendency was detected in NDVI over 5 051 m, and there was a decreasing tendency in NDVI from June to September at pixels located between 3 767 m and 5 051 m, however at less than 3 767 m, NDVI are generally of downward trend; (5) Variability of 32% NDVI are controlled by elevation, but that 51% NDVI are dominated by precipitation with the correlation coefficient over 0.7 mainly distributes between 3 003 m and 5 843 m (especially for the pixels with elevation over 4 010 m in them), and that the leftover 17% NDVI primarily depend on other factors. The findings are expected to provide an insight for local ecological protection and water resources management and be a reference for relevant studies in similar areas.

Cite this article

LIU Xiaowan , PENG Dingzhi , XU Zongxue . Variability of NDVI with Elevation and Precipitation in Yarlung Zangbo River Basin[J]. Plateau Meteorology, 2018 , 37(2) : 349 -357 . DOI: 10.7522/j.issn.1000-0534.2017.00048

References

[1]Fabricante I, Oesterheld M, Paruelo J M, 2009. Annual and seasonal variation of NDVI explained by current and previous precipitation across Northern Patagonia[J]. J Arid Environ, 73(8):745-753.
[2]Li H D, Jiang J, Chen B, et al, 2016. Pattern of NDVI-based vegetation greening along an altitudinal gradient in the eastern Himalayas and its response to global warming[J]. Environmental Monitoring & Assessment, 188(3):1-10.
[3]Li H D, Li Y K, Shen W S, et al, 2015. Elevation-dependent vegetation greening of the Yarlung Zangbo River Basin in the southern Tibetan Plateau, 1999-2013[J]. Remote Sens, 7(12):16672-16687.
[4]Pettorelli N, Vik J O, Mysterud A, et al, 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change[J]. Trends in Ecology & Evolution, 20(9):503-510.
[5]Prasad V K, Badarinath K V S, Eaturu A, 2008. Effects of precipitation, temperature and topographic parameters on evergreen vegetation greenery in the Western Ghats, India[J]. Int J Climatol, 28(13):1807-1819.
[6]Propastin P A, Kappas M, 2008. Reducing uncertainty in modeling the NDVI-precipitation relationship:A comparative study using global and local regression techniques[J]. Giscience & Remote Sensing, 45(1):47-67.
[7]Sellers P J, Tucker C J, Collatz G J, 1994. A global 1° by 1° NDVI data set for climate studies. 1994. Part 2:The generation of global fields of terrestrial biophysical parameters from the NDVI[J]. Int J Remote Sens, 15(17):3519-3545.
[8]Tourre Y M, Jarlan L, Lacaux J P, et al, 2008. Spatio-temporal variability of NDVI-precipitation over southernmost South America:possible linkages between climate signals and epidemics[J]. Environ Res Lett, 3(4):52-55.
[9]Wang J, Ye B S, Liu F J, et al, 2011. Variations of NDVI over elevational zones during the past two decades and climatic controls in the Qilian Mountains, Northwestern China[J]. Arctic Antarctic & Alpine Research, 43(1):127-136.
[10]Bai S Y, Wang L, Shi J Q, 2012. Time lag effect of NDVI response to climatic change in Yangtze River Basin[J]. Chinese Journal of Agrometeorology, 33(4):579-586.<br/>白淑英, 王莉, 史建桥, 2012.长江流域NDVI对气候变化响应的时滞效应[J].中国农业气象, 33(4):579-586.
[11]Chen B, Li H D, Cao X Z, et al, 2015. Vegetation pattern and spatial distribution of NDVI in the Yarlung Zangbo River Basin of China[J]. J Desert Res, 35(1):120-128.<br/>陈斌, 李海东, 曹学章, 等, 2015.雅鲁藏布江流域植被格局与NDVI分布的空间响应[J].中国沙漠, 35(1), 120-128.
[12]Fu X F, Yang S T, Liu C M, 2006. Spatial-temporal changes of NDVI and their relations with principal climatic factors in Yarlung Tsangpo River Basin's Stations[J]. Research of Soil and Water Conservation, 13(3):229-232.<br/>付新峰, 杨胜天, 刘昌明, 2006.雅鲁藏布江流域NDVI时空分布及与站点气候因子的关系[J].水土保持研究, 13(3):229-232.
[13]Han H B, Ma M G, Yan P, 2011. Periodicity analysis of NDVI time series and its relationship with climatic factors in the Heihe River Basin in China[J]. Remote Sens Technol Appl, 26(5):554-560.<br/>韩辉邦, 马明国, 严平, 2011.黑河流域NDVI周期性分析及其与气候因子的关系[J].遥感技术与应用, 26(5):554-560.
[14]Hu L J, Peng D Z, Zhang M Y, et al, 2012. Spatial interpolation of meteorological variables in Yarlung Zangbo River basin[J]. Journal of Beijing Normal University (Natural Science), 48(5):449-452.<br/>胡林涓, 彭定志, 张明月, 等, 2012.雅鲁藏布江流域气象要素空间插值方法的比较与改进[J].北京师范大学学报(自然科学版), 48(5):449-452.
[15]Jia D Y, Wen J, Ma Y M, et al, 2017. Impacts of vegetation on water and heat exchanges in the source region of Yellow River[J]. Plateau Meteor, 36(2):424-435. DOI:10.7522./j.issn. 1000-0534.2016.00044.<br/>贾东于, 文军, 马耀明, 等, 2017.植被对黄河源区水热交换影响的研究[J].高原气象, 36(2):424-435.
[16]Jiang L, Feng W L, Guo B, 2014. Analysis of dynamic monitoring of vegetation change and the correlation with precipitation factor in Yalu Tsangpo River basin during the past 13 years[J]. Resources and Environment in the Yangtze Basin, 23(11):1610-1619.<br/>姜琳, 冯文兰, 郭兵, 2014.雅鲁藏布江流域近13年植被覆盖动态监测及与降水因子的相关性分析[J].长江流域资源与环境, 23(11):1610-1619.
[17]Liu W, Cao M M, Liu Q, et al, 2015. Frequency of precipitation for the Weihe River Basin during 1951-2012[J]. Arid Land Geography, 38(1):18-24.<br/>刘闻, 曹明明, 刘琪, 等, 2015.1951-2012年渭河流域降水频次变化特征分析[J].干旱区地理, 38(1), 18-24.
[18]Liu Y Q, Fan G Z, Zhou D W, et al, 2007. Variability of NDVI in winter and spring on the Tibetan plateau and their relationship with summer precipitation[J]. Acta Meteor Sinica, 65(6):959-967.<br/>刘雅勤, 范广洲, 周定文, 等, 2007.青藏高原冬、春植被归一化指数变化特征及其与高原夏季降水的联系[J].气象学报, 65(6):959-967.
[19]Lü Y, Dong G T, Yang S T, et al, 2014. Spatio-temporal variation in NDVI in the Yarlung Zangbo River Basin and its relationship with precipitation and elevation[J]. Res Science, 36(3):603-611.<br/>吕洋, 董国涛, 杨胜天, 等, 2014.雅鲁藏布江流域NDVI时空变化及其与降水和高程的关系[J].资源科学, 36(3):603-611.
[20]Lü Y, Yang S T, Cai M Y, et al, 2013. The applicability analysis of TRMM precipitation data in the Yarlung Zangbo River Basin[J]. J Natural Res, (8):1414-1425.<br/>吕洋, 杨胜天, 蔡明勇, 等, 2013. TRMM卫星降水数据在雅鲁藏布江流域的适用性分析[J].自然资源学报, (8):1414-1425.
[21]Ruan C Q, 2015. Statistical downscaling on a partial correlation basis and its application in regional precipitation prediction[D]. Beijing: University of Chinese Academy of Sciences.<br/>阮成卿, 2015. 基于偏相关的统计降尺度方法及其在区域降水预测中的应用[D]. 北京: 中国科学院大学.
[22]Wei F Y, 2007. Statistical detection and prediction technology for contemporary climate[M]. Beijing:China Meteorological Press.<br/>魏凤英, 2007.现代气候统计诊断与预测技术(第二版)[M].北京:气象出版社.
[23]Xu Y M, Zhang Y, Bai L, 2016. Study on the spatio-temporal variations of vegetation fraction in Zoige based on remote sensing data[J]. Plateau Meteor, 35(3):643-650. DOI:10.7522/j.issn. 1000-0534.2015.00040.<br/>徐永明, 张宇, 白琳, 2016.基于遥感数据监测若尔盖高原植被覆盖度变化[J].高原气象, 35(3):643-650.
[24]Yu X, Yang G Y, Zhou Z H, et al, 2008. Variation of summer precipitation in Tianjin region and its urbanization effect[J]. Progress in Geograp, 27(5):43-48.<br/>俞烜, 杨贵羽, 周祖昊, 等, 2008.天津夏季降水演变规律及其城市效应[J].地理科学进展, 27(5):43-48.
[25]Zhang F, Liu S M, Xu Z W, et al, 2016. Characteristics of micrometeorology and energy transfer in the surface layer over the Zhangye Oasis-desert area[J]. Plateau Meteor, 35(5):1233-1247. DOI:10.7522/j.issn. 1000-0534.2015.00071.<br/>张芬, 刘绍民, 徐自为, 等, 2016.张掖绿洲-荒漠区域近地层微气象与水热交换特征[J].高原气象, 35(5):1233-1247.
[26]Zhang J Q, Ren Z Y, 2015. Responses of vegetation changes in growing season to precipitation in Yarlung Zangbo River Basin[J]. Research of Soil and Water Conservation, (2):209-212.<br/>张嘉琪, 任志远, 2015.雅鲁藏布江流域生长季NDVI对湿季降水的响应[J].水土保持研究, (2):209-212.
[27]Zhang M Q, 2010. Education and physiology statistics[M]. Beijing:People Education Press.<br/>张敏强, 2010.教育与心理统计学(第三版)[M].北京:人民教育出版社.
[28]Zhang Y Z, 2009. Climate changes of the recent 50 years in Qilian Mountains[D]. Lanzhou: Northwest Normal University.<br/>张耀宗, 2009. 近50年来祁连山地区的气候变化[D]. 兰州: 西北师范大学.
[29]Encyclopedia of Rivers and Lakes in China Compilation Committee, 2014. Encyclopedia of rivers and lakes in China:Section of river basins in southwest region[M]. Beijing:China Water &amp; Power Press.<br/>《中国河湖大典》编纂委员会, 2014.中国河湖大典.西南诸河卷[M].北京:中国水利水电出版社.
Outlines

/