A Simulation Comparison Study on the Climatic Characteristics of the South Asia High by the BCC Climate System Model

  • DONG Min ,
  • WU Tongwen ,
  • ZUO Qunjie ,
  • GAO Shouting
Expand
  • National climate center, 100081 Beijing, China;Institute of atmospheric physics, 100029 Beijing, China;National Key laboratory on disastrous weather, Chinese Academy of meteorological sciences, 100081 Beijing, China

Received date: 2017-02-09

  Online published: 2018-04-28

Abstract

The simulation ability of BCC climate system model (BCC_CSM1.1) on climatic characteristics of the South Asia High is assessed by using the CMIP5/AMIP historical experiment output data. The results show that the BCC_CSM1.1 can pretty well simulate the mean state, ridge line position and the high pressure center of the South Asia High and their seasonal variation. The deficiencies of the model are the followings:The simulated height field is much weaker than observation, the model produced ridge line position is slightly more southward than observation in winter half year, the simulated high pressure centers have some differences in some months, for example, the simulated SAH center is more westward than observation in May, and in summer the dipole pattern of SAH center is also not well simulated. The weak simulation of SAH is related to many factors. It was found when the sea surface temperature is specified as observations, the error from AMIP run will reduce about 13%~15% compared with the results from coupled model. This means that the total error of the coupled model is mainly from atmosphere component. The improvement of ocean model would contribute only small part to total improvement. Comparing the error from T106 resolution model with that from T42 resolution model shows that the middle high resolution model has greatly reduced the simulation error of the SAH and global 100 hPa geopotential height field. To verify the effect of topography forcing on simulation results, some experiments with different topography of Qinghai-Tibetan Plateau were conducted. It is found the topography of Qinghai-Tibetan Plateau has significant influence on the strength of the SAH and global geopotential height field. The topography uprising of the Plateau could enhance the simulated SAH strength and global geopotential height field. This means that specifying the topography correctly would improve the model simulation results.

Cite this article

DONG Min , WU Tongwen , ZUO Qunjie , GAO Shouting . A Simulation Comparison Study on the Climatic Characteristics of the South Asia High by the BCC Climate System Model[J]. Plateau Meteorology, 2018 , 37(2) : 455 -468 . DOI: 10.7522/j.issn.1000-0534.2017.00051

References

[1]Boos W R, Kuang Z, 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J]. Nature, 463:218-223.
[2]Boyle J S, 1992. Sensitivity of dynamical quantities to horizontal resolution in a climate simulation with the ECMWF atmospheric general circulation model(cycle 33)[R]. CA USA, (6). 44.
[3]Hahn D G, Manabe S, 1975. The role of mountain in south Asian monsoon circulation[J]. J Atmos Sci, 32:1515-1541.
[4]He B, Hu W, 2015. Assessment of the Summer South Asian High in eighteen CMIP5 models[J]. Atmos Oceanic Sci Lett, 8(1):33-38.
[5]Kalnay E, Kanamitsu M, Kistler R, et al, 1996. The NCEP/NCAR 40 year reanalysis project[J]. Bull Amer Meteor Soc, 77(3):437-471.
[6]Mason R B, Anderson C E, 1963. The development and decay of the 100 mb summer time anticyclone over Southern Asia[J]. Mon Wea Rev, 91:3-12.
[7]Qian Y F, Zhang Q, Yao Y, et al, 2002. Seasonal variation and heat preference of the South Asia High[J]. Adv Atmos Sci, 19(5):821-836.
[8]Washington W M, Daggupaty S M, 1975. Numerical simulation with the NCAR global circulation model of the mean condition during the Asian-African summer monsoon[J]. Mon Wea Rev, 103:105-114.
[9]Willilanson D L, Kiehl J T, Hack J J, 1995. Climate sensitivity of the NCAR community climate model (CCM2) to horizontal resolution[J]. Climate Dyn, 12(3):377-397.
[10]Wu G X, Liu Y M, Wang T W, et al, 2007. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J]. J Hydrometeor. 8 (special section):770-789.
[11]Wu T W, Li W, Ji J, et al, 2013. Global carbon budgets simulated by the Beijing climate center climate system model for the last century[J]. J Geophys Res Atmos, 118:4326-4347. DOI:10.1002/jgrd. 50320.
[12]Wu T W, Song L, Li W, et al, 2014. An overview of BCC climate system model development and application for climate change studies[J]. J Meteor Res, 28(1):34-56.
[13]Wu T W, Yu R, Zhang F, et al, 2010. The Beijing climate center atmospheric general circulation model:description and its performance for the present day climate[J]. Climate Dyn, 34:123-147. DOI:10.1007/s00382-008-0487-2.
[14]Fang Y, Fan G Z, Lai X, et al, 2016. Relation between intensity of the Qinghai-Xizang Plateau monsoon and movement of the northern hemisphere westerlies[J] Plateau Meteor, 35(6):1419-1429. DOI:10.7522/j. issn. 1000-0534.2015.00106.<br/>方韵, 范广州, 赖欣, 等, 2016.青藏高原季风强弱与北半球西风带位置变化的关系[J].高原气象, 35(6):1419-1429.
[15]Hu J G, Zhou B, Tao L, 2010. Comparative analysis of the relation between characteristic parameters of South Asia High and summer precipitation of China[J]. Meteor Mon, 36(4):51-56.<br/>胡景高, 周兵, 陶丽, 2010.南亚高压特征参数与我国夏季降水的关系分析[J].气象, 36(4):51-56.
[16]Hang Y Y, QianY F, 2004. Relationship between South Asia High and characteristic of precipitation in mid-reaches of Yangtze River and North China[J]. Plateau Meteor, 23(1):68-74.<br/>黄燕燕, 钱永甫, 2004.长江流域、华北降水特征与南亚高压的关系分析[J].高原气象, 23(1):68-74.
[17]Huang Y, QianY F, 2003. Relationships between South Asian High and summer rainfall in North China[J]. Plateau Meteor, 22(6):602-607.<br/>黄樱, 钱永甫, 2003.南亚高压与华北降水的关系[J].高原气象, 22(6):602-607.
[18]Luo S W, Qian Z A, Wang Q Q, 1982. The climatic and synoptical study about the relation between the Qinghai-Xizang high pressureon in the 100 mb surface and the flood and drought in East China in summer[J]. Plateau Meteor 1(2):1-10.<br/>罗四维, 钱正安, 王谦谦, 1982.夏季100毫巴青藏高压与我国东部旱涝关系的天气气候研究[J].高原气象, 1(2):1-10.
[19]Tao S Y, Zhu F K, 1964. The 100 mb flow patterns in South Asia in summer and its relation to the advance and retreat of the west-pacific subtropical anticyclone over the far east[J]. Acta Meteor Sinica, 34(4):385-395.<br/>陶诗言, 朱福康, 1964.夏季亚洲南部100毫巴流型的变化及其与西太平洋副高进退的关系[J].气象学报, 34(4):385-395.
[20]Wang Q, Zhao Y, Chen F, et al, 2017. Characteristics of different patterns of South Asia High and their relationships with summer precipitation in Xinjiang[J]. Plateau Meteor, 36(5):1209-1220. DOI:10.7522/j. issn. 1000-0534.2016.00123.<br/>王前, 赵勇, 陈飞, 等, 2017.南亚高压的多模态特征及其与新疆夏季降水的联系[J].高原气象, 36(5):1209-1220.
[21]Wang Z Z, Wu G X, Liu P, et al, 2005. The development of GOALS/LASG AGCM and its global climatological features in climate simulation Ⅰ-Influence of horizontal resolution[J]. J Trop Meteor, 21(3):225-237.<br/>王在志, 吴国雄, 刘平, 等, 2005.全球海-陆-气耦合模式大气模式分量的发展及其气候模拟性能Ⅰ-水平分辨率的影响[J].热带气象, 21(3):225-237.
[22]Zhang C C, Li D L, Wang H, et al, 2017. Characteristics of the surface sensible heat on the Qinghai-Xizang Plateau in the spring and its influences on the summertime rainfall pattern over the Eastern China[J] Plateau Meteor, 36(1):13-23. DOI:10.7522/j. issn. 1000-0534.2016.00028.<br/>张长灿, 李栋梁, 王慧, 等, 2017.青藏高原春季地表感热特征及其对中国东部夏季雨型的影响[J].高原气象, 36(1):13-3.
[23]Zhang Q, Qian Y F, Zhang X H, 2000. Interannual and interdecadal variations of the South Asia High[J]. Sci Atmos Sini, 24(1):123-130.<br/>张琼, 钱永甫, 张学洪, 2000.南亚高压的年际和年代际变化[J].大气科学, 24(1):67-78.
[24]Zhang Q, Wu G X, 2001. The large area flood and drought over Yangtze river valley and its relation to the South Asia High[J]. Acta Meteor Sinica, 59(5):569-577.<br/>张琼, 吴国雄, 2001.长江流域大范围旱涝与南亚高压的关系[J].气象学报, 59(5):569-577.
[25]Zhang Y, 2012. Studies on the changing characteristics of South Asia High and the relation with relevant impact factors[D]. Lanzhou: Lanzhou University, 1-166.<br/>张宇, 2012. 南亚高压变化特征及其与相关影响因子关系研究[D]. 兰州: 兰州大学, 1-166.
[26]Zheng Q L, Yan Q M, Song Q L, 1993. A numerical experiment on the medium-term activities of South Asia High[J]. J Trop Meteor, 9(2):37-45.<br/>郑庆林, 燕启民, 宋青丽, 1993.一次南亚高压中期活动过程的数值研究[J].热带气象学报, 9(2):37-45.
[27]Zhou L M, Chen H S, Peng L X, et al, 2016. Possible connection between interdecadal variation of snow depth in winter and spring over Qinghai-Xizang Plateau and South Asia High in summer[J]. Plateau Meteor, 35(1):13-23. DOI:10.7522/j. issn. 1000-0534.2014.00152.<br/>周利敏, 陈海山, 彭丽霞, 等, 2016.青藏高原冬春雪深年代际变化与南亚高压可能联系[J].高原气象, 35(1):13-23.
[28]Zhou N F, 2006. The South Asian High and its variability in the climate of the twentieth century experiment for IPCC[D]. Nanjing: Nanjing University, 1-133.<br/>周宁芳, 2006. IPCC 20世纪气候模拟中的南亚高压及其气候变率[D]. 南京: 南京大学, 1-133.
[29]Zhu F K, Lu L H, Chen X J, et al, 1980. South Asia High[M]. Beijing:Science Press.<br/>朱福康, 陆龙骅, 陈咸吉, 等, 1980.南亚高压[M].北京:科学出版社.
Outlines

/