The Qinghai-Tibetan Plateau (QTP) is one of the climate sensitive zone in China. The cirrus of QTP was studied for investigating the distribution features based on the MYD06_L2 of MODIS cloud product data. There we analyzed the cloud optical thickness, cloud-top height, effective scale and probability distribution of cirrus. The results showed as follows:(1)The cirrus probability of occurrence is higher in March and April and lower in October to December. Nevertheless, it performed a double peak probability distribution pattern. According to our research, one peak period is in January to April, and the other is in July to August, the two lower periods occurred in May to June and September to December. (2) The probability distribution of cirrus cloud-top height produced significant change in June and October. The mean height of the cirrus cloud peak appears in the summer months from July to August, and the minimum value appears in the winter months from January to February. (3) The effective radius of the particles in the cirrus cloud is mainly distributed in a range of 5~40 μm, and the probability is greatest in 15~25 μm. The maximum mean radius of the particles in the cirrus cloud was detected in August to September and the minimum value appeared in December to February. (4) Cirrus optical thickness was ranged in 0~40 with the top probability between 0~10. There showed a similarity to cirrus effective particles scale, the maximum and minimum of optical thickness was August to September and December to February, respectively.
[1]Baker B M, 1997. Cloud microphysics and climate[J]. Science, 276:1072-1078.
[2]Cadet B, Goldfarb L, Faduilhe D, et al, 2003. A sub-tropical cirrus clouds climatology from Reunion island (21°S, 55°E) lidar data set[J]. Geophys Res Lett, 30(3), 1130. DOI:10.1029/2002GL016342.
[3]David R D, Lawrence F R, 1990. A summary of the physical properties of cirrus cloud[J]. J Appl Meteor, 29:970-978.
[4]Heymsfield A J, McFarquhar G M, 2002. Mid-latitude and tropical cirrus:Microphysical properties[J]. Cirrus, 78-101.
[5]King M D, Menzel W P, Kaufman Y J, et al, 2003. Cloud and aerosol properties precipitable water and profiles of temperature and water vapor from MODIS[J]. IEEE Trans Geosci Remote Sens, 41(2):442-458.
[6]Reichardt J, 1999. Optical and geometrical properties of northern midlatitude cirrus clouds observed with a UV Raman lidar[J]. Phys Chem Earth(Part B), 24:255-260.
[7]Chen B D, Liang P, Li Y Q, 2008. An overview of research on clouds over the Tibetan Plateau[J]. Plateau Mountain Meteor Res, 28(1):66-70.<br/>陈葆德, 梁萍, 李跃清, 2008.青藏高原云的研究进展[J].高原山地气象研究, 28(1):66-70.
[8]Cao Y M, Wei H L, Dai C M, et al, 2015. Retrieval of the optical thickness and cloud top height of cirrus clouds based on AIRS IR high spectral resolution data[J]. Spectroscopy and Spectral Analysis, 35(5):1308-1312.<br/>曹亚楠, 魏合理, 戴聪明, 等, 2015. AIRS红外高光谱卫星数据反演卷云光学厚度和云顶高度[J].光谱学与光谱分析, 35(5):1308-1312.
[9]Cao Y N, Wei H L, Xu Q S, 2013. Statistics analysis of cirrus properties in Beijing region based on MODIS cloud products[J]. J Atmos Environ Opt, 8(4):271-280.<br/>曹亚楠, 魏合理, 徐青山, 2013.基于MODIS云产品的北京地区卷云特性统计分析[J].大气与环境光学学报, 8(4):271-280.
[10]Liu J J, Chen B D, 2017. Cloud occurrence frequency and structure over the Qinghai-Tibetan Plateau from cloudsat observation[J]. Plateau Meteor, 36(3):632-642. DOI:10.7522/j.issn. 1000-0534.2017.00028.<br/>刘建军, 陈葆德, 2017.基于CloudSat卫星资料的青藏高原云系发生频率及其结构[J].高原气象, 36(3):632-642.
[11]Liu J, 2013. Analysis on cloud microphysical property over Qinghai-Xizang Plateau using satellite data[J]. Plateau Meteor, 32(1):38-43. DOI:10.7522/j.issn. 1000-0534.2012.00005.<br/>刘健, 2013.利用卫星数据分析青藏高原云微物理特性[J].高原气象, 32(1):38-43.
[12]Liu R J, Zhang L, Wang H B, et al, 2011. Cirrus cloud measurement using lidar over semi-arid areas[J]. Chinese J Atmos Sci, 35(5):863-869.<br/>刘瑞金, 张镭, 王宏斌, 等, 2011.半干旱地区卷云特征的激光雷达探测[J].大气科学, 35(5):863-869.
[13]Li Y H, Han Z G, Yao Z G, et al, 2011. Characteristics of cloud climatology over the Tibetan Plateau and its neighborhood[J]. Science Technology and Engineering, 11(33):8145-8148.<br/>李义华, 韩志刚, 姚志刚, 等, 2011.青藏高原及周边地区云气候特征[J].科学技术与工程, 11(33):8145-8148.
[14]Min W B, Li Y Q, Zhou J, 2015. Validation of MODIS land surface temperature products in east of the Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(6):1511-1516. DOI:10.7522/j.issn. 1000-0534.2014.00082.<br/>闵文彬, 李跃清, 周纪, 2015.青藏高原东侧MODIS地表温度产品验证[J].高原气象, 34(6):1511-1516.
[15]Shi G Y, 2007. Atmospheric Radiation[M]. Beijing:Science Press:6-7.<br/>石广玉, 2007.大气辐射学[M].北京:科学出版社:6-7.
[16]Wei L, Zhong Q, 1997. Characteristics of cloud climatology over Qinghai-Xizang Plateau[J]. Plateau Meteor, 16(1):10-15.<br/>魏丽, 钟强, 1997.青藏高原云的气候学特征[J].高原气象, 16(1):10-15.
[17]Xue X L, Qi F D, Fan A Y, et al, 2006. Lidar observations of clouds over Hefei[J]. Chinese Journal of Quantum Electronics, 23(4):527-532.<br/>薛新莲, 戚福第, 范爱媛, 等, 2006.合肥地区卷云的激光雷达探测[J].量子电子学报, 23(4):527-532.
[18]Yang Y P, Dong X G, Dai C M, et al, 2016. Cirrus clouds properties in the Arctic in summer based on MODIS data[J]. Infrared and Laser Engineering, 45(4):556-560.<br/>杨亦萍, 董晓刚, 戴聪明, 等, 2016.利用MODIS数据对北极夏季卷云特性的研究[J].红外与激光工程, 45(4):556-560.
[19]Zhu Q G, Lin J R, Shou S W, et al, 2007. The theories and methods of synoptic meteorology[M]. Beijing:Meteorological Press, 199-203.<br/>朱乾根, 林锦瑞, 寿绍文, 等, 2007.天气学原理和方法[M].北京:气象出版社, 199-203.