Compare and Analyze FY-2G Cloud Products to Ground-Based Manual Observed Cloud Amount

  • LI Ya ,
  • GUO Jianxia ,
  • CAO Yunchang ,
  • ZHOU Can ,
  • CHEN Yizhi
Expand
  • China Meteorological Administration Meteorological Observation Centre, Beijing 100081, China;Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;Civil Aviation Administration of China, North China Regional Administration, Beijing 100621, China

Received date: 2017-01-04

  Online published: 2018-04-28

Abstract

In order to promote the layout of automated ground-based cloud amount measurements, the cloud fraction (CFR) and the cloud total amounts (CTA) measured by geostationary satellite FY-2G were compared to the manual cloud amount measured at surface stations to analyze the concordance rate and deviation between each other. China was selected as study area and five months (July and October of 2015 and January, April and July of 2016) were selected to represent spring, summer, autumn and winter. There are five times manual cloud amount measurement (8 h, 11 h, 14 h, 17 h, 20 h) per day at 838 stations in China. The satellite data within 5 km radius of these station's points were used to produce point's data corresponding the manual cloud amount observed data, where the inverse distance to power method was used to the CFR data and the regional average method was used to the CTA data. It is considered consistent when the difference of two data is less than 2 tenths of sky cover at the same times. The results showed that the data of the satellite FY-2G cloud products' are usually lower than that of the manual observed at surface and the CTA is more obvious than the CFR. Then four levels of sky covers were divided by the manual cloud amount for further study. The level one is clear sky that cloud amount is less than 1 tenths of sky, the level two is partly cloudy that cloud covers 2~3 tenths of sky, the level three is cloudy that cloud covers 4~7 tenths of sky, and the level four is overcast that cloud amount is more than 8 tenths of sky. The comparison between satellite data and surface observed data was conducted time by time in each level. The results indicated that the performance of CTA and CFR are not good enough in all levels of sky cover and all over the country. In average, CTA is better than CFR in the condition of clear sky and overcast sky, while CFR is better than CTA in clear sky and partly cloudy sky. For the exploration of the performance' spatial distribution, the west and southwest part of China suffer from scarce capacity, especially in Yunnan, Guizhou, Guangxi and Guangdong province. So, we should plan more automated ground-based cloud observation in west and southwest part of China. It is obvious that although the satellite cloud product' could help us know more spatial information of cloud, a certain density of ground-based observation is needed to correct and promote the satellite products for further applications.

Cite this article

LI Ya , GUO Jianxia , CAO Yunchang , ZHOU Can , CHEN Yizhi . Compare and Analyze FY-2G Cloud Products to Ground-Based Manual Observed Cloud Amount[J]. Plateau Meteorology, 2018 , 37(2) : 514 -523 . DOI: 10.7522/j.issn.1000-0534.2017.00027

References

[1]Ding S G, Zhao C S, Shi G Y, et al, 2005. Analysis of global total cloud amount variation over the past 20 years[J]. J Appl Meteor Sci, 16(5):670-677.
[2]Werkmeister A, Lockhoff M, Schrempf M, et al, 2015. Comparing satellite to ground-based automated and manual cloud coverage observations-a case study[J]. Atmospheric Measurement Techniques, 8(5):2001-2015.
[3]Ding N G, Zhao C S, Shi G Y, et al, 2005. Analysis of global total cloud amount variation over the past 20 years[J]. J Appl Meteor Sci, 16(5):670-677.<br/>丁宁国, 赵春生, 石广玉, 等, 2005.近20年全球总云量变化趋势分析[J].应用气象学报, 16(5):670-677.
[4]Du C L, Yu X, Li X M, et al, 2012. Analysis on cloudiness change in Qingling mountain region and its possible reason in past 60 years[J]. Plateau Meteor, 31(2):446-455.<br/>杜立川, 余兴, 李星敏, 等, 2012.过去60年中国秦岭地区云量变化及原因分析[J].高原气象, 31(2):446-455.
[5]Duan J, Liu Y, 2011. Variation and trends of cloud amount in China over past 20 years[J]. Meteor Sci Technol, 39(3):280-288.<br/>段皎, 刘煜, 2011.近20年中国地区云量变化趋势[J].气象科技, 39(3):280-288.
[6]Han C M, Li Y D, Shi X K, 2015. Overview of researches on cloud analysis and prediction methods[J]. Adv Earth Sci, 30(4):505-516.<br/>韩成鸣, 李耀东, 史小康, 2015.云分析预报方法研究进展[J].地球科学进展, 30(4):505-516.
[7]Han Y Q, Cong C H, 2015. Analysis and validation of FY-2E total cloud amount products in North China and Huanghuai area[J]. J Meteor Environ, 31(5):153-158.<br/>韩永清, 丛春华, 2015. FY-2E总云量产品在华北和黄淮区域的分析检验[J].气象与环境报, 31(5):153-158.
[8]Li H R, Sun X J, Wang M Y, et al, 2015. Research on different types of cloud and variation characteristics of hydrometers in cloud over China and its neighborhood in daytime[J]. Plateau Meteor, 34(6):1625-1635. DOI:10.7522/j.issn. 1000-0534.2014.00129.<br/>李浩然, 孙学金, 王旻燕, 等, 2015.中国及周边地区白天各类云及其水凝物变化特征研究[J].高原气象, 34(6):1625-1635.
[9]Liu H L, Zhu W Q, Yi S H, et al, 2003. Climatic analysis of the cloud over China[J]. Acta Meteor Sinica, 61(4):466-473.<br/>刘洪利, 朱文琴, 宜树华, 等, 2003.中国地区云的气候特征分析[J].气象学报, 61(4):466-473.
[10]Liu J, Zhang L Y, 2011. Calculation and validation method of cloud amount by high spatial resolution satellite data[J]. J Appl Meteor Sci, 22(1):35-45.<br/>刘健, 张里阳, 2011.气象卫星高空间分辨率数据的云量计算与检验[J].应用气象学报, 22(1):35-45.
[11]Liu J, 2009. Cloud properties analysis and its application in FY-2 cloud detection[J]. J Appl Meteor Sci, 20(6):673-681.<br/>刘健, 2009.中国区域云特征分析在FY-2云检测中的应用[J].应用气象学报, 20(6):673-681.
[12]Liu J, Yang X F, Cui P, 2016. Validation of total cloud amount in 2007 derived by NOAA/AVHRR[J]. Plateau Meteor, 35(4):1027-1038. DOI:10.7522/j.issn. 1000-0534.2015.00029.<br/>刘健, 杨晓峰, 崔鹏, 2016. NOAA卫星2007年总云量数据精度评估[J].高原气象, 35(4):1027-1038.
[13]Liu R X, Chen H B, Zheng Z J, et al, 2009. Analysis and validation of total cloud amount data in China[J]. J Appl Meteor Sci, 20(5):571-578.<br/>刘瑞霞, 陈洪斌, 郑照军, 等, 2009.总云量产品在中国区域的分析检验[J].应用气象学报, 20(5):571-578.
[14]Liu R X, Liu Y J, 2004. Clou climatology characteristic of China[J]. J Appl Meteor Sci, 15(4):468-476.<br/>刘瑞霞, 刘玉洁, 2004.中国云气候特征的分析[J].应用气象学报, 15(4):468-476.
[15]Liu Y G, Wang N L, Wu X B, et al, 2013. Temporal and spatical characteristics and influence factors of low cloud amount over China in 1951-2009[J]. Plateau Meteor, 32(6):1608-1616. DOI:10.7522/j.issn. 1000-0534.2012.00142.<br/>刘引鸽, 王宁练, 武小波, 等, 2013.1951-2009年中国低云量的时空特征及其影响因素[J].高原气象, 32(6):1608-1616.
[16]Wang K L, Jiang H, Chen S Q, 2001. Cloud cover over Qinghai-Xizang Plateau:Comparison among meteorological station observations, ISCCP-C2, and NCEP reanalysis data[J]. Plateau Meteor, 20(3):252-257.<br/>王可丽, 江灏, 陈世强, 2001.青藏高原地区的总云量——地面观测、卫星反演和同化资料的对比分析[J].高原气象, 20(3):252-257.
[17]Wang Y, Bo Y, Wang C H, 2016. Relations of cloud amount to asymmetric diurnal temperature change in central and eastern Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(4):908-919. DOI:10.7522/j.issn. 1000-0534.2015.00033.<br/>王艺, 伯玥, 王澄海, 2016.青藏高原中东部云量变化与气温的不对称升高[J].高原气象, 35(4):908-919.
[18]Wu W, Wang S G, 2011. Tendency change of cloud cover over northern China and its relation with regional climate[J]. Plateau Meteor, 30(3):651-658.<br/>吴伟, 王式功, 2011.中国北方云量变化趋势及其与区域气候的关系[J].高原气象, 30(3):651-658.
[19]Xi L, Shi C X, Zhao B F, et al, 2013. Validation and evaluation of cloud amount by geostationary satellite data from 1995 to 2010[J]. Meteor Sci Technol, 41(1):8-14..<br/>席琳, 师春香, 赵笔锋, 等, 2013.1995-2010年静止卫星云量数据检验和评价[J].气象科技, 41(1):8-14.
[20]Xu X K, 2012. Spatiotemporal variation of total cloud and low cloud over China[J]. Meteor Mon, 38(1):90-95.<br/>徐兴奎, 2012.中国区域总云量和低云量分布变化[J].气象, 38(1):90-95.
[21]Yang X, Wang Y Q, Liu Z H, 2016. Comparison of two different satellite precipitation data in Sichuan from May to August in 2013[J]. Plateau Meteor, 35(4):1039-1049. DOI:10.7522/j.issn. 1000-0534.2015.00060.<br/>杨星, 王永前, 刘志红, 2016.四川省2013年夏季卫星降雨数据的对比研究[J].高原气象, 35(4):1039-1049.
[22]Yi S H, Liu H L, Li W L, et al, 2011. Spatial and temporal distributions of cloud over northwest of China[J]. Meteor Mon, 29(1):7-11.<br/>宜树华, 刘洪利, 李维亮, 等, 2011.中国西北地区云时空分布特征的初步分析[J].气象, 29(1):7-11.
[23]Zhang Q, Li Y Q, Chen Q L, et al, 2011. Temporal and spatial distributions of cloud cover over southwest China in recent 46 years[J]. Plateau Meteor, 30(2):339-348.<br/>张琪, 李跃清, 陈权亮, 等, 2011.近46年西南地区云量的时空变化特征[J].高原气象, 30(2):339-348.
[24]Zhong L Z, Liu L P, Ge R S, 2009. Characterstics about the millimeter-wavelength radar and its status and prospect in and abroad[J]. Adv Earth Sci, 24(4):383-391.<br/>仲凌志, 刘黎平, 葛润生, 2009.毫米波测云雷达的特点及其研究现状与展望[J].地球科学进展, 24(4):383-391.
[25]Zhou X X, Zhang H, Jing X W, 2016. Distribution and variation trends of cloud amount and optical thickness[J]. J Atmos Environ Optics, 11(1):1-13.<br/>周喜讯, 张华, 荆现文, 2016.中国地区云量和云的光学厚度的分布与变化趋势[J].大气与环境光学学报, 11(1):1-13.
[26]Zhu Y N, Yu X, Xu X H, et al, 2015. Glaciation and ice multiplication of convective clouds and their dependence on aerosol investigated by satellites[J]. Plateau Meteor, 34(6):1758-1764. DOI:10.7522/j.issn. 1000-0534.2014.00083.<br/>朱延年, 余兴, 徐小红, 等, 2015.利用卫星分析对流云成冰能力与衍生机制及气溶胶影响[J].高原气象, 34(6):1758-1764.
[27]Zong M Y, Wang X H, Liu X N, et al, 2004. Specifications for surface meteorological observation[S]. Beijing. China Meteorological Press, 14-16.<br/>宗曼晔, 王晓辉, 刘小宁, 等, 2003. 地面气象观测规范[S]. 北京: 气象出版社, 14-16.
Outlines

/