Surface Relative Humidity Decreases and Its Cause over the Qinghai-Tibetan Plateau in Recent Ten Years

  • XIE Xinru ,
  • YOU Qinglong ,
  • LIN Houbo
Expand
  • Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD); Nanjing University of Information Science and Technology(NUIST), Nanjing 210044, Jiangsu, China

Received date: 2017-08-22

  Online published: 2018-06-28

Abstract

Based on the monthly surface relative humidity and surface temperature data of 71 stations over the Qinghai-Tibetan Plateau (QTP) provided by the National Meteorological Information Center/China Meteorological Administration, the changes of surface relative humidity and surface temperature and the reasons of the surface relative humidity decreases in recent ten years over the QTP were studied by using the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis data from 1979 to 2014. The results show that the surface temperature over the QTP is sustained warming, but the surface relative humidity has rapidly decreased after 2000. The analysis of the variation of vertically integrated water vapor transport flux over the QTP and its surroundings shows that water vapor is mainly transported into the QTP from the southern boundary, and the water vapor into the QTP carried by wind from the Bay of Bengal is decreased after 2000 due to the weaker wind speed. This could result in the decrease of the vertically integrated water vapor transport flux and the water vapor into the QTP. According to the Clausius-Clapeyron relationship, the reasons of the surface relative humidity decrease over the QTP in recent ten years have been explained:as the surface temperature continues to increase, the ability of water contained by the air become stronger. However, the water vapor into the QTP is not increased correspondingly but decreased. It could cause the decreased rate between the existences of water vapor and the saturated water vapor. That is to say, the surface relative humidity over the QTP is decreased.

Cite this article

XIE Xinru , YOU Qinglong , LIN Houbo . Surface Relative Humidity Decreases and Its Cause over the Qinghai-Tibetan Plateau in Recent Ten Years[J]. Plateau Meteorology, 2018 , 37(3) : 642 -650 . DOI: 10.7522/j.issn.1000-0534.2017.00091

References

[1]Dee D P, Uppala S M, Simmons A J, et al, 2011.The ERA-Interim reanalysis:configuration and performance of the data assimilation system[J].Quart J Roy Meteor Soc, 137(656):553-597.
[2]Feng L, Zhou T J, 2012.Water vapor transport for summer precipitation over the Tibetan Plateau:Multidata set analysis[J].J Geophys Res Atmos, 117(D20):85-99.
[3]Gao Y H, Cuo L, Zhang Y X, 2014.Changes in moisture flux over the Tibetan Plateau during 1979—2011 and possible mechanisms[J].J Climate, 27:1876-1893.
[4]Hardwick J R, Westra S, Sharma A, 2011.Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity[J].Geophys Res Lett, 37(22):L22805.
[5]Lin H B, You Q L, Jiao Y, et al, 2015.Spatial and temporal characteristics of the precipitation over the Tibetan Plateau from 1961 to 2010 based on high resolution grid-observation dataset[J].J Natural Resour, 30(2):271-281.
[6]Liu X D, Chen B D, 2000.Climatic warming in the Tibetan Plateau during recent decades[J].Int J Climatol, 20(14):1729-1742.
[7]Isaac V, Wijngaarden W A V, 2012.Surface water vapor pressure and temperature trends in North America during 1948—2010[J].J Climate, 25(10):3599-3609.
[8]Simmons A J, Willett K M, Jones P D, et al, 2010.Low-frequency variations in surface atmospheric humidity, temperature, and precipitation:Inferences from reanalyses and monthly gridded observational datasets[J].J Geophys Res, 115(D1):1-21.
[9]Wu S H, Yin Y H, Du Z, et al, 2007.Climatic trends over the Tibetan Plateau during 1971—2000[J].J Geographical Sci, 17(2):141-151.
[10]Xu X D, Shi X Y, Wang Y Q, et al, 2008.Data analysis and numerical simulation of moisture source and transport associated with summer precipitation in the Yangtze River Valley over China[J].Meteorology & Atmospheric Physics, 100(1-4):217-231.
[11]You Q L, Min J Z, Lin H B, et al, 2015a.Observed climatology and trend in relative humidity in the central and eastern Tibetan Plateau[J].J Geophys Res Atmos, 120(9):3610-3621.
[12]You Q L, Min J Z, Zhang W, et al, 2015b.Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau[J].Climate Dyn, 45:791-806.
[13]Zhou S W, Wu P, Wang C H, et al, 2012.Spatial distribution of atmospheric water vapor and its relationship with precipitation in summer over the Tibetan Plateau[J].Acta Geographica Sinica, 22(5):795-809.
[14]Dawa C R, 2010.Impacts of global warming on the water resources of Tibetan Plateau[J].Tibetan Studies (4):90-99.<br/>达瓦次仁, 2010.全球气候变化对青藏高原水资源的影响[J].西藏研究(4):90-99.
[15]Ding Y H, Hu G Q, 2003.A study on water vapor budget over China during the 1998 severe flood periods[J].Acta Meteor Sinica, 61(2):129-145.<br/>丁一汇, 胡国权, 2003.1998年中国大洪水时期的水汽收支研究[J].气象学报, 61(2):129-145.
[16]Huang F F, Ma W Q, Li M S, et al, 2016.Analysis on responses of land surface temperature on the northern Tibetan Plateau to climate change[J].Plateau Meteor, 35(1):55-63.DOI:10.7522/j.issn.1000-0534.2015.00075.<br/>黄芳芳, 马伟强, 李茂善, 等, 2016.藏北高原地表温度对气候变化响应的初步分析[J].高原气象, 35(1):55-63.
[17]Liang H, Liu J M, Zhang J C, et al, 2006.Research on retrieval of the amount of atmospheric water vapor over Qinghai-Xizang Plateau[J].Plateau Meteor, 25(6):1055-1063.<br/>梁宏, 刘晶淼, 章建成, 等, 2006.青藏高原大气总水汽量的反演研究[J].高原气象, 25(6):1055-1063.
[18]Lin H B, You Q L, Jiao Y, et al, 2016.Water vapor transportation and its influences on precipitation in summer over Qinghai-Xizang Plateau and its surroundings[J], Plateau Meteor, 35(2):309-317.DOI:10.7522/j.issn.1000-0534.2014.00146.<br/>林厚博, 游庆龙, 焦洋, 等, 2016.青藏高原及附近水汽输送对其夏季降水影响的分析[J].高原气象, 35(2):309-317.
[19]Li Y, Zhu G R, 2015.Changes of climate zones in the Transition area of three natural zones during the past 50 years and their responses to climate change[J].Adv Earth Sci, 30(7):791-801.<br/>李育, 朱耿睿, 2015.三大自然区过渡地带近50年来气候类型变化及其对气候变化的响应[J].地球科学进展, 30(7):791-801.
[20]Liu Y Y, Li Y F, Xie J F, et al, 2016.Climate change characteristics of free atmospheric humidity and its relationship with temperature and precipitation in northeast China[J].Sci Geographica Sinica, 36(4):628-636.<br/>刘玉英, 李宇凡, 谢今范, 等, 2016.东北高空湿度变化特征及其与地面气温和降水的关系[J].地理科学, 36(4):628-636.
[21]Mo S G, Zhang B P, Cheng W M, et al, 2004.Major environmental effects of the Tibetan Plateau[J].Progress in Geography, 23(2):88-96.<br/>莫申国, 张百平, 程维明, 等, 2004.青藏高原的主要环境效应[J].地理科学进展, 23(2):88-96.
[22]Shi X H, Xu X D, Cheng X H, 2009.Premonitory of water vapor transport in the upstream key region over the Tibetan Plateau[J].Acta Meteor Sinica, 67(3):478-487.<br/>施晓晖, 徐祥德, 程兴宏, 2009.2008年雪灾过程高原上游关键区水汽输送机制及其前兆性"强信号"特征[J].气象学报, 67(3):478-487.
[23]Shi Y F, 2003.An assessment of the issues of climatic shift from warm-dry to warm-wet in northwest China[M].Beijing:China Meteorological Press, 17-25.<br/>施雅风, 2003.中国西北气候由暖干向暖湿转型问题评估[M].北京:气象出版社, 17-25.
[24]Tao S Y, Chen L S, 2000.The second research progress of atmospheric science experiment theory in the Tibetan Plateau[M].Beijing:China Meteorological Press, 106-112.<br/>陶诗言, 陈联寿, 2000.第二次青藏高原大气科学试验理论研究进展[M].北京:气象出版社, 106-112.
[25]Wu G X, Mao J Y, Duan A M, et al, 2004.Recent progress in the study on the impacts of Tibetan Plateau on Asian summer climate[J].Acta Meteor Sinica, 62(5):528-540.<br/>吴国雄, 毛江玉, 段安民, 等, 2004.青藏高原影响亚洲夏季气候研究的最新进展[J].气象学报, 62(5):528-540.
[26]Wang X, Gong Y F, Cen S X, 2009.Characteristics of the moist pool and its moisture transports over Qinghai-Xizang Plateau in summer half year[J], Acta Geographic Sinica, 64(5):601-608.<br/>王霄, 巩远发, 岑思弦, 2009.夏半年青藏高原"湿池"的水汽分布及水汽输送特征[J].地理学报, 64(5):601-608.
[27]Xie C Y, Li M J, Zhang X Q, 2014.Characteristics of summer atmospheric water resources and its causes over the Tibetan Plateau in recent 30 years[J].J Natural Resour, 29(6):979-989.<br/>解承莹, 李敏姣, 张雪芹, 2014.近30a青藏高原夏季空中水资源时空变化特征及其成因[J].自然资源学报, 29(6):979-989.
[28]Xie Q Y, Gong Y F, Yang R, et al, 2015.The characteristics of the moist pool over the Tibet Plateau based on ERA-Interim data[J].J Natural Resour, 30(7):1163-1171.<br/>谢启玉, 巩远发, 杨蓉, 等, 2015.基于ERA-Interim资料分析青藏高原"湿池"变化特征[J].自然资源学报, 30(7):1163-1171.
[29]Xu X D, Zhao T L, Lu C G, et al, 2014.Characteristics of the water cycle in the atmosphere over the Tibetan Plateau[J].Acta Meteor Sinica, 72(6):1079-1095.<br/>徐祥德, 赵天良, Lu Chungu, 等, 2014.青藏高原大气水分循环特征[J], 气象学报, 72(6):1079-1095.
[30]Yang Y C, Gao D Y, Li B S, 1987.Preliminary study of water vapor pass along the downstream of Yarlung Zangbo[J].Sci China (Ser B), 17(8):893-902.<br/>杨逸畴, 高登义, 李澍生, 1987.雅鲁藏布江下游河谷水汽通道初探[J].中国科学(B辑), 17(8):893-902.
[31]Zheng D, Lin Z Y, Zhang X Q, 2002.Progress in studies of Tibetan Plateau and global environmental change[J].Earth Science Frontiers, 9(1):95-102.<br/>郑度, 林振耀, 张雪芹, 2002.青藏高原与全球环境变化研究进展[J].地学前缘, 9(1):95-102.
[32]Zhang R H, Su F G, Jiang Z H, et al, 2015.An overview of projected climate and environmental changes across the Tibetan Plateau in the 21<sup>st</sup> century[J].Chinese Sci Bull, 60:3036-3047.<br/>张人禾, 苏凤阁, 江志红, 等, 2015.青藏高原21世纪气候和环境变化预估研究进展[J].科学通报, 60:3036-3047.
[33]Zhou S W, Wu P, Wang C H, et al, 2011.Spatial distribution of atmospheric water vapor and its relationship with precipitation in summer over the Tibetan Plateau[J].Acta Geographica Sinica, 66(11):1466-1478.<br/>周顺武, 吴萍, 王传辉, 等, 2011.青藏高原夏季上空水汽含量演变特征及其与降水的关系[J].地理学报, 66(11):1466-1478.
[34]Zhou Y S, Gao S T, Deng G, 2005.A diagnostic study of water vapor transport and budget during heavy precipitation over the Changjiang River and the Huaihe River basins in 2003[J].Chinese J Atmos Sci, 29(2):195-204.<br/>周玉淑, 高守亭, 邓国, 2005.江淮流域2003年强梅雨期的水汽输送特征分析[J].大气科学, 29(2):195-204.
Outlines

/