Intercomparison Study on Precipitation Observations of TRwS204 and Chinese Standard Precipitation Gauge in the Qilian Mountains

  • ZHENG Qin ,
  • CHEN Rensheng ,
  • HAN Chuntan ,
  • SONG Yaoxuan
Expand
  • Qilian Alpine Ecology and Hydrology Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;Key Laboratory of Ecohydrology of Inland River Basin, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-01-17

  Online published: 2018-06-28

Abstract

The type and process of precipitation, and the climate condition are complex in mountainous area, and biases exist in the observations of various precipitation gauges. It is urgent to understand the difference between measurements from manual and automatic gauges, and the difference between the gauge measurements and the real precipitation. Comparison of precipitation measurements was carried out in the Hulu watershed of Heihe river upstream in the Qilian Mountains from September 2014 to August 2017. The Chinese standard precipitation gauge[no wind shield (CSPGUN) and equipped with single Alter wind shield (CSPGSA)] and the TRwS204 weighing precipitation gauge[equipped with single Alter wind shield (TRwSSA)] which was commonly used in the Qilian Mountains were used. Choosing the adjustments of the measurements from the Chinese standard precipitation gauge installed in accordance with the Double Fence Intercomparison Reference recommended by the World Meteorological Organization as standard precipitation. The results show that:(1) The average dynamic losses (the percentage of the average dynamic losses relative to the average standard precipitation) of CSPGUN, CSPGSA and TRwSSA were 0.21 mm (3.4%), 0.12 mm (1.9%) and 0.61 mm (9.8%) for rain, and 0.37 mm (7.6%), 0.16 mm (3.3%) and 0.51 mm (10.5%)for sleet, and 0.27 mm (10.2%), 0.09 mm (3.4%) and 0.57 mm (21.4%) for snow, respectively. (2) The difference between dynamic losses of CSPGUN and CSPGSA was mainly related to the effect of the wind shield. The difference between dynamic losses of CSPGSA and TRwSSA was mainly related to the different gauge shape, and it could also be affected by the specific errors of TRwS204. (3) For rain, gauge catch ratio decreased a lot when mean wind speed was higher than 2.0 m·s-1. Because the mean wind speed was relatively low for sleet and snow, only the catch ratio of CSPGUN decreased with the increase of wind speed for snow.

Cite this article

ZHENG Qin , CHEN Rensheng , HAN Chuntan , SONG Yaoxuan . Intercomparison Study on Precipitation Observations of TRwS204 and Chinese Standard Precipitation Gauge in the Qilian Mountains[J]. Plateau Meteorology, 2018 , 37(3) : 747 -756 . DOI: 10.7522/j.issn.1000-0534.2018.00039

References

[1]Chen R S, Liu J F, Kang E S, et al, 2015.Precipitation measurement intercomparison in the Qilian Mountains, north-eastern Tibetan Plateau[J].The Cryosphere, 9(5):1995-2008.DOI:10.5194/tc-9-1995-2015.
[2]Goodison B E, Louie P Y T, Yang D Q, 1998. WMO Solid Precipitation Measurement Intercomparison: Final Report[R]. Geneva, Switzerland: WMO.
[3]Kochendorfer J, Nitu R, Wolff M, et al, 2017.Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE[J].Hydrol Earth Syst Sci, 21(7):3525-3542.DOI:10.5194/hess-21-3525-2017.
[4]Lanza L G, Leroy M, Alexandropoulos C, et al, 2006. WMO Laboratory Intercomparison of Rainfall Intensity Gauges[R]. Geneva, Switzerland: WMO.
[5]Nitu R, Wong K, 2010. CIMO survey on national summaries of methods and instruments for solid precipitation measurement at automatic weather stations[R]. Geneva, Switzerland: WMO.
[6]Ren Z H, Li M Q, 2007.Errors and correction of precipitation measurements in China[J].Adv Atmos Sci, 24(3):449-458.DOI:10.1007/s00376-007-0449-3.
[7]Savina M, Sch?ppi B, Molnar P, et al, 2012.Comparison of a tipping-bucket and electronic weighing precipitation gage for snowfall[J].Atmos Res, 103(3):45-51.DOI:10.1016/j.atmosres.2011.06.010.
[8]Sevruk B, 1996.Adjustment of tipping-bucket precipitation gauge measurements[J].Atmos Res, 42(1/4):237-246.
[9]Sevruk B, Chvíla B, 2005.Error sources of precipitation measurements using electronic weight systems[J].Atmos Res, 77(1/4):39-47.DOI:10.1016/j.atmosres.2004.10.026.
[10]Sevruk B, Klemm S, 1989. Catalogue of national standard precipitation gauges[R]. Geneva, Switzerland: WMO.
[11]Sevruk B, Ondrás M, Chvíla B, 2009.The WMO precipitation measurement intercomparisons[J].Atmos Res, 92(3):376-380.DOI:10.1016/j.atmosres.2009.01.016.
[12]Smith C D, 2008.Correcting the wind bias in snowfall measurements made with a Geonor T-200B precipitation gauge and Alter wind shield[J].CMOS Bulletin SCMO, 36(5):162-167.
[13]Yang D Q, 2014.Double Fence Intercomparison Reference (DFIR) vs.Bush Gauge for "true" snowfall measurement[J].J Hydrol, 509:94-100.DOI:10.1016/j.jhydrol.2013.08.052.
[14]Yang D Q, Elomaa E, Tuominen A, et al, 1999.Wind-induced precipitation undercatch of the Hellmann gauges[J].Hydrol Res, 30(1):57-80.
[15]Yang D Q, Simonenko A, 2014.Comparison of winter precipitation measurements by six Tretyakov gauges at the Valdai experimental site[J].Atmos Ocean, 52(1):39-53.DOI:10.1080/07055900.2013.865156.
[16]Ye B S, Yang D Q, Ding Y J, et al, 2004.A bias-corrected precipitation climatology for China[J].J Hydrometeor, 5(6):1147-1160.DOI:10.1175/JHM-366.1.
[17]Chen R S, Kang E S, Ding Y J, 2014.Some knowledge on and parameters of China's alpine hydrology[J].Adv Water Sci, 25(3):307-317.DOI:10.14042/j.cnki.32.1309.2014.03.006.<br/>陈仁升, 康尔泗, 丁永建, 2014.中国高寒区水文学中的一些认识和参数[J].水科学进展, 25(3):307-317.
[18]Feng G T, You X Y, Zhang G M, 1996.The comparative analysis on the error of rainfall observation at the northern slope of Tianshan Mountains[J].Arid Zone Res, 13(1):20-23.<br/>冯功堂, 由希尧, 张先明, 1996.天山北坡降水观测误差对比分析[J].干旱区研究, 13(1):20-23.
[19]Han Y Z, Ma W Q, Wang B Y, et al, 2017.Climatic characteristics of rainfall change over the Qinghai-Tibetan Plateau from 1980 to 2013[J].Plateau Meteor, 36(6):1477-1486.DOI:10.7522/j.issn.1000-0534.2016.00125.<br/>韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分析[J].高原气象, 36(6):1477-1486.
[20]Liu J Q, 2014.Weighing sensor circuit compensation mechanism and compensation resistance calculation[J].Weighing Instrument, 43(1):23-29.<br/>刘九卿, 2014.称重传感器电路补偿机理及补偿电阻计算[J].衡器, 43(1):23-29.
[21]Ren Z H, Wang G L, Zou F L, et al, 2003.The research of precipitation measurement errors in China[J].Acta Meteor Sinica, 61(5):621-627.<br/>任芝花, 王改利, 邹风玲, 等, 2003.中国降水测量误差的研究[J].气象学报, 61(5):621-627.
[22]Wang L, Chen R S, Song Y X, 2017.Research review on calculation methods and influential factors on areal precipitation of alpine mountains[J].Plateau Meteor, 36(6):1546-1556.DOI:10.7522/j.issn.1000-0534.2017.00007.<br/>王磊, 陈仁升, 宋耀选, 2017.高寒山区面降水量获取方法及影响因素研究进展[J].高原气象, 36(6):1546-1556.
[23]Wang X Q, Chen R S, Liu J F, 2017.Spatial and temporal variation characteristics of accumulated negative temperature in Qilian Mountains under climate change[J].Plateau Meteor, 36(5):1267-1275.DOI:10.7522/j.issn.1000-0534.2016.00096.<br/>王希强, 陈仁升, 刘俊峰, 2017.气候变化背景下祁连山区负积温时空变化特征分析[J].高原气象, 36(5):1267-1275.
[24]Yang D Q, Jiang T, Zhang Y S, et al, 1988.Analysis and correction of errors in precipitation measurement at the head of Urumqi river, Tianshan[J].J Glaciol Geocryol, 10(4):384-399.<br/>杨大庆, 姜彤, 张寅生, 等, 1988.天山乌鲁木齐河源降水观测误差分析及其改正[J].冰川冻土, 10(4):384-399.
[25]Ye B S, Yang D Q, Ding Y J, et al, 2007.A bias-corrected precipitation climatology for China[J].Acta Geograp Sinica, 62(1):3-13.<br/>叶柏生, 杨大庆, 丁永建, 等, 2007.中国降水观测误差分析及其修正[J].地理学报, 62(1):3-13.
[26]Zhao Q D, Ye B S, He X B, et al, 2014.Bias correction of daily precipitation measured by Geonor T-200B precipitation gauge in Tanggula Mountain[J].Plateau Meteor, 33(2):452-459.DOI:10.7522/j.issn.1000-0534.2013.00013.<br/>赵求东, 叶柏生, 何晓波, 等, 2014.唐古拉山区Geonor T-200B雨雪量计日降水观测误差修正[J].高原气象, 33(2):452-459.
Outlines

/