Comparative Analysis of Ozone Variation in UTLS due to Different Types and Intensities of Cut-off Lows over East Asia

  • ZHOU Tianjiao ,
  • CHEN Dan ,
  • WANG Yongqing ,
  • GUO Dong
Expand
  • Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;College of Atmospheric Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China

Received date: 2017-05-08

  Online published: 2018-06-28

Abstract

The combinative ERA-Interim high resolution ozone reanalysis data and NCEP reanalysis data were used to comparatively analyze the variation of ozone in the UTLS (Upper Troposphere-Lower Stratosphere) caused by stratospheric intrusion during different types ("shallow" type and "deep" type) and different intensities (focus on "deep" type) of cut-off lows over East Asia. The results showed that the stratospheric ozone intrusion occurs in all the "deep" and "shallow" type of cut-off lows. The ozone increment in the "shallow" type of cut-off low is comparable to the "deep" type at 300 hPa. Therefore, in the process of the STE (Stratosphere-Troposphere Exchange) during cut-off lows, the role of "shallow" type of cut-off lows can not be ignored. In the vertical distribution of ozone variation, due to the vertical structure of the cut-off lows, ozone increase mainly covers from upper troposphere to lower stratosphere in the "deep" type cases, while the "shallow" type cases concentrate on upper troposphere. In addition, the distribution patterns of the UTLS ozone imply that the value of ozone content and the range of high ozone content are related to the intensity of the system itself. The range of ozone positive anomalies is larger and the increase of ozone concentration is higher in stronger "deep" type of cut-off lows than that of weaker cases at 300 hPa. In the "deep" type cut-off lows, the descending depth of dynamical tropopause and the ozone concentration of the intrusion in stronger cut-off lows are much larger than those of weaker cut-off lows. Meanwhile, the jet with different types of cut-off lows has the same intensity, while the vertical range of those with the "deep" type of cut-off lows is much larger. The ozone average of 11 years and the ozone average in the month that the systems happened of 11 years were used as standards of ozone anomalies for comparative analysis respectively. The results showed that the comparison results of ozone in different types and intensities of cut-off lows are not affected by using different mean ozone value as the criterion of anomaly.

Cite this article

ZHOU Tianjiao , CHEN Dan , WANG Yongqing , GUO Dong . Comparative Analysis of Ozone Variation in UTLS due to Different Types and Intensities of Cut-off Lows over East Asia[J]. Plateau Meteorology, 2018 , 37(3) : 837 -849 . DOI: 10.7522/j.issn.1000-0534.2017.00079

References

[1]Barre J, Peuch V H, Attie J L, et al, 2012.Stratosphere-troposphere ozone exchange from high resolution MLS ozone analyses[J].Atmos Chem Phys, 12(14):6129-6144.DOI:10.5194/acp-12-6129-2012.
[2]Chen D, Lu D R, Chen Z Y, 2014.Simulation of the stratosphere-troposphere exchange process in a typical cold vortex over northeast China[J].Sci China Earth Sci, 57(7):1452-1463.DOI:10.1007/s11430-014-4864-x.
[3]Gettelman A, Hoor P, Pan L L, et al, 2011.The extratropical upper troposphere and lower stratosphere[J].Rev Geophys, 49, RG3003.DOI:10.1029/2011RG000355.
[4]Hoinka K P, 1998.Statistics of the global tropopause pressure[J].Mon Wea Rev, 126(12):3303-3325.DOI:10.1175/1520-0493(1998)126<3303:SOTGTP>2.0.CO;2.
[5]Holton J R, Haynes P H, Mclntyre M E, et al, 1995.Stratosphere-troposphere exchange[J].Rev Geophys, 33(4):403-439.DOI:10.1029/95RG02097.
[6]Homeyer C R, Bowman K P, Pan L L, et al, 2011.Dynamical and chemical characteristics of tropospheric intrusions observed during START08[J].J Geophys Res, 116, D06111.DOI:10.1029/2010JD015098.
[7]Kentarchos A S, Davies T D, 1998.A climatology of cut-off lows at 200 hPa in the Northern Hemisphere, 19901994[J].Int J Climatol, 18(4):379-390.DOI:10.1002/(SICI)1097-0088(19980330)18:43.0.CO;2-F.
[8]Kremser S, Thomason L W, Hobe M V, et al, 2016.Stratospheric aerosol-Observations, processes, and impact on climate[J].Rev Geophys, 54(2):278-335.DOI:10.1002/2015RG000511.
[9]Kuang S, Newchurch M J, Burris J, et al, 2012.Stratosphere-to-troposphere transport revealed by ground-based lidar and ozonesonde at a midlatitude site[J].J Geophys Res, 117, D18305.DOI:10.1029/2012JD017695.
[10]Langford A O, Brioude J, Cooper O R, et al, 2012.Stratospheric influence on surface ozone in the Los Angeles area during late spring and early summer of 2010[J].J Geophys Res, 117, D00V06.DOI:10.1029/2011JD016766.
[11]Langford A O, Masters C D, Proffitt M H, et al, 1996.Ozone measurements in a tropopause fold associated with a cut-off low system[J].Geophys Res Lett, 23(18):2501-2504.DOI:10.1029/96GL02227.
[12]Li D, Bian J C, 2015a.Observation of a summer tropopause fold by ozonesonde at Changchun, China:comparison with reanalysis and model simulation[J].Adv Atmos Sci, 32(10):1354-1364.DOI:10.1007/s00376-015-5022-x.
[13]Li D, Bian J C, Fan Q J, 2015b.A deep stratospheric intrusion associated with an intense cut-off low event over East Asia[J].Sci China Earth Sci, 58(1):116-128.DOI:10.1007/s11430-014-4977-2.
[14]LiuC X, Liu Y, Liu X, et al, 2013.Dynamical and chemical features of a cutoff low over northeast China in July 2007:Results from satellite measurements and reanalysis[J].Adv Atmos Sci, 30(2):525-540.DOI:10.1007/s00376-012-2086-8.
[15]Mizuta R, Yoshimura H, 2009.Extratropical stratosphere-troposphere exchange in an AGCM with the horizontal grid size of 20 km[J].J Geophys Res, 114, D17104.DOI:10.1029/2008JD011628.
[16]Nieto R, Gimeno L, Torre L D L, et al, 2005.Climatological features of cutoff low systems in the Northern Hemisphere[J].J Climate, 18(16):3085-3103.
[17]Palmén E, Newton C W, 1969. Atmospheric circulation systems: Their structure and physical interpretation[C]. Academic Press, New York, 603.
[18]Pan L L, Bowman K P, Atlas E L, et al, 2010.The stratosphere-troposphere analyses of regional transport 2008 experiment[J].Bull Amer Meteor Soc, 91(3):327-342.DOI:10.1175/2009BAMS2865.1.
[19]Pan L L, Bowman K P, Shapiro M, et al, 2007.Chemical behavior of the tropopause observed during the stratosphere-troposphere analyses of regional transport experiment[J].J Geophys Res, 112(D18), D18110.DOI:10.1029/2007JD008645.
[20]Price J D, Vaughan G, 1993.The potential for stratosphere-troposphere exchange in cut-off-low systems[J].Quart J Roy Meteor Soc, 119(510):343-365.DOI:10.1002/qj.49711951007.
[21]Skerlak, B, Sprenger M, Wernli H, 2014.A global climatology of stratosphere-troposphere exchange using the ERA-Interim data set from 1979 to 2011[J].Atmos Chem Phys, 14(2):913-937.DOI:10.5194/acp-1 4-913-2014.
[22]SongY S, Lu D R, Li Q, et al, 2016.The impact of cut-off lows on ozone in the upper troposphere and lower stratosphere over Changchun from ozonesonde observations[J].Adv Atmos Sci, 33(2):135-150.DOI:10.1007/s00376-015-5054-2.
[23]Stohl A, Bonasoni P, Cristofanelli P, et al, 2003.Stratosphere-troposphere exchange:A review, and what we have learned from STACCATO[J].J Geophys Res, 108(D12):469-474.DOI:10.1029/2002JD002490.
[24]Cao Z Q, Lü D R, 2016.Simulation and comparative analysis of stratosphere-troposphere exchange in the summers of 2009 and 2010 in China and surrounding areas[J].Trans Atmos Sci, 39(3):300-308.DOI:10.13878/j.cnki.dqkxxb.20140427001.<br/>曹治强, 吕达仁, 2016.2009年和2010年夏季我国及周边地区STE模拟与对比分析[J].大气科学学报, 39(3):300-308.
[25]Chen D, Chen Z Y, Lü D R, 2014.Simulation of the generation of stratospheric gravity waves in upper-tropospheric jet stream accompanied with a cold vortex over Northeast China[J].Chinese J Geophys, 57(1):10-20.DOI:10.6038/cjg20140102.<br/>陈丹, 陈泽宇, 吕达仁, 2014.与东北冷涡相伴的高空急流诱发平流层重力波的数值模拟研究[J].地球物理学报, 57(1):10-20.
[26]Chen D, Zhou T J, Qian K, et al, 2016.Distribution of substances in upper troposphere-lower stratosphere region during typical cold vortexes over Northeast China[J].China Science Paper, 11(15):1750-1756.DOI:2095-2783(2016)15-1750-07.<br/>陈丹, 周天娇, 钱恺, 等, 2016.典型东北冷涡过程中上对流层-下平流层区域物质分布特征分析[J].中国科技论文, 11(15):1750-1756.
[27]Ma L C, Sun L, Wang N, 2017.Analysis of water vapor transport characteristics of typical rainstorm cases in Northeast China[J].Plateau Meteor, 36(4):960-970.DOI:10.7522/j.issn.1000-0534.2016.00078.<br/>马梁臣, 孙力, 王宁, 2017.东北地区典型暴雨个例的水汽输送特征分析[J].高原气象, 36(4):960-970.
[28]Qiao F X, 2007. Study on the characteristics of heavy rainfall in Northeast China and the structure of Northeast vortex[D]. Beijing: Institute of Atmospheric Physics, Chinese Academy of Sciences, 58-59.<br/>乔枫雪, 2007. 东北暴雨天气气候特征及东北低涡结构研究[D]. 北京: 中国科学院大气物理研究所, 58-59.
[29]Shi C H, Li H, Zheng B, et al, 2014.Stratosphere-troposphere exchange corresponding to a deep convection in warm sector and abnormal subtropical front induced by a cutoff low over East Asia[J].Chinese J Geophys, 57(1):21-30.DOI:10.6 038/cjg 20140103.<br/>施春华, 李慧, 郑彬, 等, 2014.一次切断低压诱发的暖区深对流与异常副热带锋及其平流层-对流层交换[J].地球物理学报, 57(1):21-30.
[30]Sun Y H, Li Z C, Shou S W, 2017.Analysis of two cases of extremely severe snowstorms in Northeast China[J].Plateau Meteor, 36(2):549-561.DOI:10.7522/j.issn.1000-0534.2017.00012.<br/>孙艳辉, 李泽椿, 寿绍文, 2017.东北地区两次历史罕见暴风雪天气过程的分析[J].高原气象, 36(2):549-561.
[31]Wan L F, Guo D, Liu R Q, et al, 2017.Evaluation of WACCM3 performance on simulation of the double core of ozone valley over the Qinghai-Xizang in Summer[J].Plateau Meteor, 36(1):57-66.DOI:10.7522/j.issn.1000-0534.2016.00004.<br/>万凌峰, 郭栋, 刘仁强, 等, 2017.WACCM3对夏季青藏高原臭氧谷双心结构的模拟性能评估[J].高原气象, 36(1):57-66.
[32]Wang W G, Liang J P, Sun J H, et al, 2008.Study on the seasonal variation of the tropopause atmospheric ozone[J].Journal of Yunnan University (Natural Sciences), 30(1):47-53.DOI:0258-7971(2008)01-0047-07.<br/>王卫国, 梁俊平, 孙绩华, 等, 2008.对流层顶大气臭氧的季节变化研究[J].云南大学学报(自然科学版), 30(1):47-53.
[33]Wei H H, Zheng Y F, 2006.Analysis of the temporal and spatial distributions of the total ozone over China[J].Trans Atmos Sci, 29(3):390-395.DOI:1000-2022(2006)03-0390-06.<br/>韦惠红, 郑有飞, 2006.我国臭氧总量的时空分布特征[J].大气科学学报, 29(3):390-395.
[34]Xu A L, Zhong A H, Sun J H, et al, 2016.Vertical structure characteristic from troposphere to low stratosphere in Dali Region over the Southeastern Margin of Qinghai-Xizang Plateau[J].Plateau Meteor, 35(1):77-85.DOI:10.7522/j.issn.1000-0534.2014.00136.<br/>徐安伦, 钟爱华, 孙绩华, 等, 2016.大理地区对流层至低平流层大气垂直结构的特征分析[J].高原气象, 35(1):77-85.
[35]Yang J, Lü D R, 2003.A simulation study of stratosphere-troposphere exchange due to cut-off-low over eastern Asia[J].J Appl Meteor Sci, 27(6):1031-1044.<br/>杨健, 吕达仁, 2003.东亚地区一次切断低压引起的平流层、对流层交换数值模拟研究[J].大气科学, 27(6):1031-1044.
[36]Yang J, Lü D R, 2004a.Simulation of stratosphere-troposphere exchange effecting on the distribution of ozone over eastern Asia[J].J Appl Meteor Sci, 28(4):579-588.DOI:1006-9895(2004)04-0579-10.<br/>杨健, 吕达仁, 2004a.东亚地区平流层、对流层交换对臭氧分布影响的模拟研究[J].大气科学, 28(4):579-588.
[37]Yang J, Lü D R, 2004b.Diagnosed seasonal variation of stratosphere-troposphere exchange in the Northern Hemisphere by 2000 data[J].J Appl Meteor Sci, 28(2):294-300.DOI:1006-9895(2004)02-0294-07.<br/>杨健, 吕达仁, 2004b.2000年北半球平流层、对流层质量交换的季节变化[J].大气科学, 28(2):294-300.
[38]Yang S Y, Zhou S W, Zhang R Q, et al, 2012.Coupling relationship between tropopause height and total ozone as well as ascending motion over the Tibetan Plateau[J].Trans Atmos Sci, 35(4):438-447.DOI:1674-7097(2012)04-0438-10.<br/>杨双艳, 周顺武, 张人禾, 等, 2012.青藏高原对流层顶高度与臭氧总量及上升运动的耦合关系[J].大气科学学报, 35(4):438-447.
[39]Zhang L X, Li Z H, 2009.A summary of research on cold vortex over Northeast China[J].Climat Environ Res, 14(2):218-228.DOI:1006-9585(2009)02-0218-11.<br/>张立祥, 李泽椿, 2009.东北冷涡研究概述[J].气候与环境研究, 14(2):218-228.
[40]Zhao Q, Liu Y, Guan Z Y, et al, 2015.Anomalous feature of ozone in upper troposphere/lower stratosphere over Beijing in winter 2008[J].Trans Atmos Sci, 38(6):796-803.DOI:10.13878/j.cnki.dqkxxb.20130612019.<br/>赵倩, 刘毅, 管兆勇, 等, 2015.2008年冬季北京上空上对流层/下平流层臭氧的异常特征[J].大气科学学报, 38(6):796-803.
Outlines

/