The Leading Modes of Summertime Precipitation Anomalies over the Yangtze River Basin and Possible Causes

  • XIAO Zhixiang ,
  • TAN Jianghong
Expand
  • Guangxi Meteorological Observatory, Nanning 530022, Guangxi, China;Meteorological Bureau of Jingzhou, Jingzhou 434100, Hubei, China

Received date: 2017-10-10

  Online published: 2018-10-28

Abstract

Based on the daily mean rainfall data at 202 stations within Yangtze River basin, the daily gridded precipitation, with a horizontal resolution of 0.5°×0.5° for the China domain from National Meteorological Information Center in version 2, and the JRA-55 reanalysis datasets, the leading modes of summertime precipitation anomalies over the Yangtze River basin were investigated with Empirical Orthogonal Function (EOF) and its possible causes were revealed. The analysis showed that there are two dominant modes of the summertime precipitation over Yangtze River basin. The first EOF mode (EOF1) depicts a characteristic of unified spatial distribution with obvious interannual variation, representing the typical drought and flood events of the summer precipitation over the Yangtze River basin. And the second EOF model (EOF2) exhibits a characteristic of meridional dipole pattern with obvious interdecadal variability overlay on interannual variability. Moreover, results also showed that the EOF2 pattern is closely associated with the anti-cyclone anomaly over the Scandinavian Peninsula, which stimulates a teleconnection wave-train at 200 hPa, making the South Asian High shrinks westward and the western Pacific subtropical high shifts eastward. Thus, water vapor transportation shifts eastward and southward over Eastern China, favoring moisture convergent and divergent over the southern and northern part of the Yangtze River basin, respectively. And then the seesaw precipitation anomaly pattern forms over the southern and northern part of the Yangtze River basin.

Cite this article

XIAO Zhixiang , TAN Jianghong . The Leading Modes of Summertime Precipitation Anomalies over the Yangtze River Basin and Possible Causes[J]. Plateau Meteorology, 2018 , 37(5) : 1304 -1312 . DOI: 10.7522/j.issn.1000-0534.2018.00019

References

[1]Barnston A G, Livezey R E, 1987. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns[J]. Mon Wea Rev, 115(6):1083-1126.
[2]Bretherton C S, Widmann M, Dymnikov V P, et al, 1999. The effective number of spatial degrees of freedom of a time-varying field[J]. J Climate, 12(7):1990-2009.
[3]Bueh C L, Nakamura H, 2007. Scandinavian pattern and its climatic impact[J]. Quart J Roy Meteor Soc, 133(629):2117-2131.
[4]Chen W, Graf H F, Huang R H, 2000. The interannual variability of East Asian winter monsoon and its relation to the summer monsoon[J]. Adv Atmos Sci, 17(1):48-60.
[5]Ebita A, Kobayashi S, Ota Y, et al, 2011. The Japanese 55-year reanalysis "JRA-55":An interim report[J]. Sola, 7(1):149-152.
[6]Enomoto T, Hoskins B J, Matsuda Y, 2003. The formation mechanism of the Bonin high in August[J]. Quart J Roy Meteor Soc, 129(587):157-178.
[7]Gong D Y, Zhu J H, Wang S W, 2002. Significant relationship between spring AO and the summer rainfall along the Yangtze River[J]. Chinese Sci Bull, 47(11):948-951.
[8]North G R, Bell T L, Cahalan R F, et al, 1982. Sampling errors in the estimation of empirical orthogonal functions[J]. Mon Wea Rev, 110(7):699-706.
[9]Smith T N, Reynolds R W, 2003. Extended reconstruction of global sea surface temperature based on COADS data (1854-1997)[J]. J Climate, 16(10):1495-1510.
[10]Takaya K, Nakamura H, 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J]. J Atmos Sci, 58(6):608-627.
[11]Wang Y, Yan Z, 2011. Changes of frequency of summer precipitation extremes over the Yangtze River in association with large-scale oceanic-atmospheric conditions[J]. Adv Atmos Sci, 28(5):1118-1128.
[12]Wu Z H, Huang N E, 2009. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Adv Adap Data Anal, 1(1):1-41.
[13]Xiao M, Zhang Q, Singh V P, 2014. Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China[J]. Int J Climatol, 35(12):3556-3567.
[14]Zhang W, Jin F, Stuecker M F, et al, 2016. Unraveling El Ni?o's impact on the East Asian Monsoon and Yangtze River summer flooding[J]. Geophys Res Lett, 43(21):11375-11382.
[15]Bueh C L, Shi N, Ji L R, 2008. Maintenance mechanism of the Scandinavian pattern in its positive phase during 2000/2001 winter and its influence on the weather over the northern part of China[J]. Plateau Meteor, 27(1):76-83.<br/>布和朝鲁, 施宁, 纪立人, 2008.2000/2001年冬季北欧异常流型形成机理及其对我国北方天气的影响[J].高原气象, 27(1):76-83.
[16]Chen X F, Song W L, 2000. Analysis of relationship between snow cover on Eurasia and Qinghai-Xizang Plateau in winter and summer rainfall in China and application to prediction[J]. Plateau Meteor, 19(2):214-223.<br/>陈兴芳, 宋文玲, 2000.欧亚和青藏高原冬春季积雪与我国夏季降水关系的分析和预测应用[J].高原气象, 19(2):214-223.
[17]Dong Z L, Ren B H, Zheng J Q, et al, 2016. The relationship between prior-winter SST around Austria and summer rainfall in the Yangtze River valley of China[J]. Chinese J Atmos Sci, 40(6):1273-1283.<br/>董祝雷, 任宝华, 郑建秋, 等, 2016.前冬澳大利亚周边海温与我国长江流域夏季降水的联系[J].大气科学, 40(6):1273-1283.
[18]Gong Z S, He M, 2006. Relationship between summer rainfall in Changjiang River valley and SSTA of various seasons[J]. Meteor Mon, 32(1):56-61.<br/>龚振凇, 何敏, 2006.长江流域夏季降水与全球海温关系的分析[J].气象, 32(1):56-61.
[19]Han D, Chen H S, Xu B, et al, 2014. Impact of spring snowmelt over the Eurasian continent on summer rainfall in Yangtze River valley[J]. J Meteor Sci, 34(3):237-242.<br/>韩冬, 陈海山, 许蓓, 等, 2014.欧亚大陆春季融雪与长江流域夏季降水的可能联系[J].气象科学, 34(3):237-242.
[20]Huang R H, Cai R S, Chen J L, et al, 2006. Interdecadal variations of drought and flooding disasters in China and their association with the East Asian climate system[J]. Chinese J Atmos Sci, 30(5):730-743.<br/>黄荣辉, 蔡榕硕, 陈际龙, 等, 2006.我国旱涝气候灾害的年代际变化及其与东亚气候系统变化的关系[J].大气科学, 30(5):730-743.
[21]Jiang T, Shi Y F, 2003. Global climatic warming, the Yangtze floods and potential loss[J]. Adv Earth Sci, 18(2):277-284.<br/>姜彤, 施雅风, 2003.全球变暖、长江水灾与可能损失[J].地球科学进展, 18(2):277-284.
[22]Jing W Q, Cui Y Y, Liu R X, et al, 2017. Quantitative study on water vapor pumping over Qinghai-Tibetan Plateau and water vapor paths influencing summer precipitation in the middle and lower reach of the Yangtze River[J]. Plateau Meteor, 36(4):900-911. DOI:10.7522/j.issn. 1000-0534.2016.00084.<br/>敬文琪, 崔园园, 刘瑞霞, 等, 2017.影响长江中下游夏季降水的青藏高原水汽抽吸作用和水汽路径的定量化研究[J].高原气象, 36(4):900-911.
[23]Liu Y, Liu Y M, 2016. Spatial pattern and causes of inter-annual variability of autumn rainfall in southwest China[J]. Chinese J Atmos Sci, 40(6):1215-1226.<br/>刘扬, 刘屹岷, 2016.我国西南地区秋季降水年际变化的空间差异及其成因[J].大气科学, 40(6):1215-1226.
[24]Wang J, Qi L, He J H, et al, 2016. Relationship between spring soil moisture in the Tibetan Plateau and summer precipitation in the Yangtze River basin and its possible mechanism[J]. Chinese J Geophys, 59(11):3985-3995.<br/>王静, 祁莉, 何金海, 等, 2016.青藏高原春季土壤湿度与我国长江流域夏季降水的联系及其可能机理[J].地球物理学报, 59(11):3985-3995.
[25]Wang W, Xu Z L, Cai X J, et al, 2016. Aridity characteristic in middle and lower reaches of Yangtze River area based on Palmer drought severity index analysis[J]. Plateau Meteor, 35(3):693-707. DOI:10.7522/j.issn. 1000-0534.2015.00011.<br/>王文, 许志丽, 蔡晓军, 等, 2016.基于PDSI的长江中下游地区干旱分布特征[J].高原气象, 35(3):693-707.
[26]Zhang Q, Wu G X, 2001. The large area flood and drought over Yangtze River valley and its relation to the South Asia High[J]. Acta Meteor Sinica, 59(5):569-577.<br/>张琼, 吴国雄, 2001.长江流域大范围旱涝与南亚高压的关系[J].气象学报, 59(5):569-577.
[27]Zhao Y F, Zhu J, 2015. Assessing quality of grid daily precipitation datasets in China in recent 50 years[J]. Plateau Meteor, 34(1):50-58. DOI:10.7522/j.issn. 1000-0534.2013.00141.<br/>赵煜飞, 朱江, 2015.近50年中国降水格点日值数据集精度及评估[J].高原气象, 34(1):50-58.
[28]Zhou B T, 2011. Linkage between winter sea surface temperature east of Australia and summer precipitation in the Yangtze River valley and a possible physical mechanism[J]. Chinese Sci Bull, 56(11):1301-1307.<br/>周波涛, 2011.冬季澳大利亚东侧海温与长江流域夏季降水的联系及可能物理机制[J].科学通报, 56(11):1301-1307.
Outlines

/