Low-Frequency Features during the Two Typical Extreme Cold Events in China

  • LI Yan ,
  • ZHANG Jinyu ,
  • LI Xu ,
  • MA Baisheng ,
  • WANG Yafang
Expand
  • Key Laboratory of Arid Climate Change and Disaster Reduction of Gansu Province/College of Atmosphere Science, Lanzhou University, Lanzhou 730000, Gansu, China

Received date: 2017-11-18

  Online published: 2018-10-28

Abstract

Keeping oscillation of low frequency of 30~60 days, Butterworth band-pass filter method was used to process the NCEP/NCAR reanalysis data. Based on the application of the low-frequency synoptic map (LFSM), low frequency features of the two extreme low temperature events including durative low temperature, snow fall and freezing weather in early 2008 and "overlord"-level cold wave in 2016 were analyzed in order to reveal the characteristics, forming and evolution of the low frequency systems during these two events. The results are as follows:During durative low temperature, snow fall and freezing weather in early 2008, large-scale atmospheric systems including blocking-high and upper-level jet stream all featured a distinct 30~60 days oscillation. The positive (negative) anomaly of geopotential height was closely coincided with the low frequency high (low) pressure of the low frequency systems, and the center of positive zonal wind anomaly was consistent with the high value center of low frequency zonal wind. During this event, the positive phase of the Arctic Oscillation (AO) favored the strengthening of the Middle East jet and the maintenance of the blocking high, resulting in durative low temperature in south China. The 30~60 days oscillation features of the weather systems including upper-level jet and blocking high were not so obvious during "overlord"-level cold wave in 2016 as that during early 2008. However, the low pressure of low frequency can describe the generating and developing of the polar vortex. Meanwhile the low-frequency synoptic map reflected the phase transition of AO before and after the cold wave. The phase of AO was positive in later December 2015 while negative in early January 2016, which led to the weakened latitudinal circulations of the middle latitudes and the strengthen longitudinal circulations. Then under north air stream at the front of blocking high ridge guidance, the strong cold air in the middle of polar vortex invaded southern China. These can be concluded as the main cause of the sharp drop in temperature. Although the position distribution of low-frequency low pressure, high pressure and the south path of cold air are different, the low-frequency flow field showed the phase transition of AO lagging behind the synoptic flow field about two days during the two events. By tracking and estimate the path of such low-frequency signal in the LFSM. This result can provide reference for extended-range weather forecast of similar extreme cold events by using the numerical forecast products.

Cite this article

LI Yan , ZHANG Jinyu , LI Xu , MA Baisheng , WANG Yafang . Low-Frequency Features during the Two Typical Extreme Cold Events in China[J]. Plateau Meteorology, 2018 , 37(5) : 1341 -1352 . DOI: 10.7522/j.issn.1000-0534.2018.00035

References

[1]Donat M G, Alexander L V, Yang H, et al, 2013. Updated analyses of temperature and preci-pitation extreme indices since the beginning of the twentieth century; The HadEX2 dataset[J]. Abstracts, 118(5):2098-2118.
[2]Krishnamurt T N, Subrahmanyam D, 1982. The 30~50 days mode at 850mb during MONEX[J]. J Atoms Sci, 39(9):2088-2095.
[3]Seager R, Kushnir Y, Nakamura J, et al, 2010. Northern Hemisphere winter snow anomalies:ENSO, NAO and the winter of 2009/10[J]. Geophys Res Lett, 37(14):14703.
[4]Seneviratne S I, Nicholla N, David E, et al, 2012. Changes in climate extremes and their impacts on natural physical environment:An overview of the IPCC SREX report[J]. Egu General Assembly Conference, 14(210):12566.
[5]Takaya K, Nakamura H, 2004. Mechanisms of intra seasonal amplification of the cold Siberian high[J]. J Atmos Sci, 62(12):4423-4440.
[6]Thompson D W J, Wallace J M, 1998. The Arctic oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophys Res Lett, 25(9):1297-1300.
[7]Wen M, Yang S, Kumar A, et al, 2009. An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008[J]. Mon Wea Rev, 137(3):1111-1131.
[8]Chen S P, Sun G W, Zeng D W, 2017. Study of atmospheric low-frequency system and strong precipitation processes in southern China[J]. Plateau Meteor, 36(2):480-490. DOI:10.7522/j.issn. 1000-0534.2016.00006.<br/>陈申鹏, 孙国武, 曾鼎文, 2017.大气低频系统与华南强降水过程的研究[J].高原气象, 36(2):480-490.
[9]Cheng S, Li C Y, 2006. The features of the wintertime stratospheric atmospheric low-frequency oscillation in the northern hemisphere[J]. Chinese J Atmos Sci, 30(4):661-670.<br/>程胜, 李崇银, 2006.北半球冬半年平流层大气低频振荡特征的研究[J].大气科学, 30(4):661-670.
[10]Jiang Q, Ma X K, Wang F, 2016. Analysis of the January 2016 atmospheric circulation and weather[J]. Meteor Mon, 42(4):514-520.<br/>江琪, 马学款, 王飞, 2016.2016年1月大气环流和天气分析[J].气象, 42(4):514-520.
[11]Li C Y, Cheng S, Pan J, 2006. The relationship between the intraseasonal oscillations in the northern hemisphere during the boreal winter in the stratosphere and troposphere[J]. Chinese J Atmos Sci, 30(5):744-752.<br/>李崇银, 程胜, 潘静, 2006.冬季北半球平流层季节内振荡与对流层季节内振荡的关系[J].大气科学, 30(5):744-752.
[12]Li L P, Song Z, Wu N, 2015. Effects of three types of El Nino events on atmospheric circulation over East Asia and following summer precipitation in eastern China[J]. Trans Atmos Sci, 38(6):753-765.<br/>李丽平, 宋哲, 吴楠, 2015.三类厄尔尼诺事件对东亚大气环流及中国东部次年夏季降水的影响[J].大气科学学报, 38(6):753-765.
[13]Li X, Wang S G, Shang K Z, et al, 2015. Extended range weather forecasting based on lunar-solar calendar super position[J]. Journal of Lanzhou University (Natural Sciences), 51(4):526-530.<br/>李旭, 王式功, 尚可政, 等, 2015.基于阴阳历叠加的中长期天气预报方法[J].兰州大学学报, 51(4):526-530.
[14]Liu B, Xu B H, Hu J W, et al, 2012. The linkage between the cold weather process over Eurasian continent and the abnormal activity of the arctic oscillation in 2012[J]. Meteor Disaster Reduction Res, 35(2):17-22.<br/>刘斌, 徐保华, 胡剑文, 等, 2012.2012年欧亚寒冷天气过程与北极涛动异常活动的联系[J].气象与减灾研究, 35(2):17-22.
[15]Ma N, 2010. The influence of the seasonal oscillation of different latitudes on the entrance of snow and rain in south china[D]. Beijing: Chinese Academy of Meteorological Sciences.<br/>马宁, 2010.不同纬度季节内振荡对2008年中国南方低温冰冻雨雪的影响[D].北京: 中国气象科学研究院.
[16]Ma X Q, Ding Y H, Xu H M, et al, 2008. The relation between strong cold waves and low-frequency waves during the winter of 2004/2005[J]. Chinese J Atmos Sci, 32(2):380-394.<br/>马晓青, 丁一汇, 徐海明, 等, 2008.2004/2005年冬季强寒潮事件与大气低频波动关系的研究[J].大气科学, 32(2):380-394.
[17]Nie Y, Sun L, Wang D Q, et al, 2016. Possible causes for the sudden drop of air temperature in the northern Hemisphere from early-to mid-winter[J]. Meteor Mon, 42(10):1223-1229.<br/>聂羽, 孙冷, 王东阡, 等, 2016.2015/2016年前冬至隆冬北半球中高纬度暖冷急转及环流特征初析[J].气象, 42(10):1223-1229.
[18]Ouyang M J, Liu K Y, Gao W L, 1995. The low-frequency oscillation features of a cold wave chilling process[J]. J Meteor, 21(12):29-31.<br/>欧阳玫君, 刘开颜, 高文兰, 1995.一次寒潮低温过程的低频振荡特征[J].气象, 21(12):29-31.
[19]Shen B Z, Feng G L, Lian Y, 2015. Abnormal characteristics and its influence on the Northern Hemisphere temperature of Arctic Oscillation in January[J]. Scientia Geographica Sinica, 35(10):1299-1305.<br/>沈柏竹, 封国林, 廉毅, 2015.1月北极涛动异常程度特征及其对北半球同期温度的影响[J].地理科学, 35(10):1299-1305.
[20]Si D, Ma L J, Wang P L, et al, 2016. Anomalous activity of arctic oscillation in winter 2015/2016 and its impact on temperature in China[J]. Meteor Mon, 42(7):892-897.<br/>司东, 马丽娟, 王鹏岭, 等, 2016.2015/2016年冬季北极涛动异常活动及其对我国气温的影响[J].气象, 42(7):892-897.
[21]Sun G W, Feng J Y, 2013. Reflections on the method of forecasting low frequency weather maps[J]. J Arid Meteor, 31(3):558-560.<br/>孙国武, 冯建英, 2013.低频天气图预报方法的思索[J].干旱气象, 31(3):558-560.
[22]Sun G W, He J H, Li Z K, et al, 2014. Low-frequency synoptic map method for extended range forecasting[M]. China Environmental Press.<br/>孙国武, 何金海, 李震坤, 等, 2014.低频天气图延伸期过程预报方法[M].中国环境出版社.
[23]Sun N, Duan H S, Xu W B, 2016. Super cold wave is coming[J]. Life and Disaster, (2):20-21.<br/>孙楠, 段昊书, 徐文彬, 2016. "超级寒潮"来了[J].生命与灾害, (2):20-21.
[24]Wang D, You Q L, Jiang Z, et al, 2016. Analysis of extreme temperature changes in China based on the homoge-neity-adjusted data[J]. Plateau Meteor, 35(5):1352-1363. DOI:10.7522/j.issn. 1000-0534.2016.00019.<br/>王岱, 游庆龙, 江志红, 等, 2016.基于均一化资料的中国极端地面气温变化分析[J].高原气象, 35(5):1352-1363.
[25]Wang L, Gao G, Zhang Q, et al, 2008. Analysis of the severe cold surge, ice-snow and frozen disasters in South China during January 2008 Ⅰ:Climatic features and its impact[J]. Meteor Mon, 34(4):95-100.<br/>王凌, 高歌, 张强, 等, 2008.2008年1月中国大范围低温雨雪冰冻灾害分析Ⅰ:气候特征与影响评估[J].气象, 34(4):95-100.
[26]Wang Y, Zhang Q Y, Peng J B, 2008. Relationship between the intra seasonal oscillation of east Asian monsoon circulation and the heavy snow over southern China in boreal winter of 2007/2008[J]. Climatic Environ Res, 13(4):459-467.<br/>王允, 张庆云, 彭京备, 2008.东亚冬季环流季节内振荡与2008年初南方大雪关系[J].气候与环境研究, 13(4):459-467.
[27]Wei F Y, 2008. Variation of cold wave disaster in China under the climate warming background[J]. Progress in Natural Science, 18(3):289-295.<br/>魏凤英, 2008.气候变暖背景下我国寒潮灾害的变化特征[J].自然科学进展, 18(3):289-295.
[28]Yang Q M, 2014. Application of summer precipitation with low-frequency oscillation based on 20~30 d oscillation in the lower reaches of the Yangtze River[J]. J Meteor, 72(3):494-507.<br/>杨秋明, 2014.基于20~30d振荡的长江下游地区夏季低频振荡降水过程预报中的应用[J].气象学报, 72(3):494-507.
[29]Yang S, Zhu Q G, 1990. Oscillation and its relation to cold air activities in Asian winter[J]. J Nanjing Institute Meteor, 13(3):339-347.<br/>杨松, 朱乾根, 1990.东亚地区冬季大气低频振荡与冷空气活动关系的初步研究[J].南京气象学院学报, 13(3):339-347.
[30]Zhang H D, Gao S T, Liu Y, 2008. Advances of research on polar vortex[J]. Plateau Meteor, 27(2):452-461.<br/>张恒德, 高守亭, 刘毅, 2008.极涡研究进展[J].高原气象, 27(2):452-461.
[31]Zhang J J, Sun G W, Chen B D, 1991. Atmospheric low frequency variation in the Tibetan Plateau[M]. Beijing:Meteorological Press, 88-104.<br/>章基嘉, 孙国武, 陈葆德, 1991.青藏高原大气低频变化的研究[M].北京:气象出版社, 88-104.
[32]Zhang K S, 1987. The 40-50 day low-frequency oscillation of the zonal mean flow and its destabilizing effect[J]. Chinese J Atmos Sci, 11(3):227-236.<br/>张可苏, 1987.40~50天的纬向基流低频振荡及其失稳效应[J].大气科学, 11(3):227-236.
[33]Zhao J Y, Ma Z F, Fan G Z, 2016. Impact of the Madden-Julian Oscillation on autumn rainfall in west China[J]. Plateau Meteor, 35(6):1487-1497. DOI:10.7522/j.issn. 1000-0534.2015.00089.<br/>赵佳玉, 马振峰, 范广洲, 2016.热带大气季节内振荡对华西秋雨的影响[J].高原气象, 35(6):1487-1497.
[34]Zhu Y Y, Jiang J, 2013. The intra seasonal characteristics of wintertime persistent cold anomaly in china and the role of low frequency oscillation in the low latitude and midlatitude[J]. J Trop Meteor, 29(4):649-655.<br/>朱毓颖, 江静, 2013.中国冬季持续性低温事件的低频特征以及中低纬大气低频振荡对其的影响[J].热带气象学报, 29(4):649-655.
Outlines

/