The Characteristics Analysis on the Summer Atmospheric Boundary Layer Height and Surface Heat Fluxes over the Qinghai-Tibetan Plateau

  • SU Yanru ,
  • Lü Shihua ,
  • FAN Guangzhou
Expand
  • School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China

Received date: 2017-11-09

  Online published: 2018-12-28

Abstract

The atmospheric boundary layer (ABL) is also known as the planetary boundary layer (PBL) which is directly influenced by its contact with the planetary surface. Surface heat fluxes usually include the sensible heat flux (SHF) and the latent heat flux (LHF), which have a great influence on the PBL. With the reanalysis data sets of planetary boundary layer height from NECP-FNL and the surface heat fluxes data from NCEP/DOE (NECP2), the temporal, spatial distribution and the variation trend of the planetary boundary layer height (PBLH), the sensible heat flux (SHF) and the latent heat flux (LHF) over the Qinghai-Tibetan Plateau have been studied with regional average. The mutation test was carried out by sliding T-test. The influence factors of boundary layer height and surface energy transport in plateau region were determined by correlation analysis and correlation coefficient test. The research time is the summer (June-August) from 2000 to 2016. The results showed that the HPBL of the whole Plateau during 2000-2016 is on the decline, the SHTFL is on the rise. The LHTFL from 2000 to 2009 is increase, but from 2009 to 2016 is decrease. The year of 2009 is the climate change time point of HPBL, at the same time the trend of other physical quantities also changed in 2009. The variation trend distributions have obvious regional differences. By the 91°E line, the plateau can be divided into two parts as the eastern and the western regions. The temporal, spatial characteristics from each part are obvious difference, and the year of 2009 is an abrupt change point of climate, also is a turning point of the annual variation tendency. The distribution of the temporal trend about the latent heat flux in the eastern and western regions is basically on the contrary between the period before and after the mutation. The impact factors of the eastern and the western region over the Qinghai-Tibetan Plateau are multiple, the main factor influenced the HPBL, SHTFL and LHTFL in the western region are the soil moisture from surface to 10 cm and the wind speed of 10 m, in contrast, the most important reason affects in the eastern region is the total cloud cover. Before and after the mutation-2009, the influence factors have big difference, for example the wind speed of 10 m has become the influence factor of surface latent heat flux in the eastern region after the abrupt climate change. The Heat Low develop in the plateau at surface layer over land and the South Asian High in the upper atmosphere, which provide the dynamic conditions for the development of the atmospheric boundary layer, it's good for the ascent. The air flow in the ascending motion can transfer the condensation latent heat released by the water vapor phase to the upper troposphere, which is beneficial to the positive feedback of latent heat flux and South Asian High.

Cite this article

SU Yanru , Lü Shihua , FAN Guangzhou . The Characteristics Analysis on the Summer Atmospheric Boundary Layer Height and Surface Heat Fluxes over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018 , 37(6) : 1470 -1485 . DOI: 10.7522/j.issn.1000-0534.2018.00040

References

[1]Esau I, 2004. Simulation of Ekman boundary layers by large eddy model with dynamic mixed sub filter closure[J]. Environmental Fluid Mechanics, 4(3):273-303.
[2]Li M, Ma Y, Ma W, et al, 2011. Different characteristics of the structure of atmospheric boundary layer between dry and rainy periods over the northern Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 3:509-516.
[3]Li Z C, Wei Z G, Lü S H, et al, 2014. Effect of land surface processes on the Tibetan Plateau's past and its predicted response to global warming:an analytical investigation based on simulation results from the CMIP5 model[J]. Environ Earth Sci, 72(4):1155-1166.
[4]Rotach M W, Zardi D, 2007. On the boundary-layer structure over highly complex terrain:Key findings from MAP[J]. Quar J Roy Meteor Soc, 133(625):937-948.
[5]Scharfer K, Emeis S, Hoffman H, et al, 2006. Influence of mixing layer height upon air pollution in urban and sub-urban areas[J]. Meteor Z, 15(6):647-658.
[6]Seidel D J, Zhang Y, Beljaars A, et al, 2012. Climatology of the planetary boundary layer over the continental United States and Europe[J]. J Geophys Res, 117:D17106.
[7]Stull R B, 1988. An Introduction to Boundary Layer Meteorology[M]. Dordrecht:Kluwer Academic Publishers, 2, 251-279.
[8]Ueno K, Sugimoto S, Tsutsui H, et al, 2012. Role of patchy snow cover on the planetary boundary layer structure during late winter observed in the central Tibetan Plateau[J]. J Meteor Soc Japan, 90(90C):145-155.
[9]Wu G, Liu Y, He B, et al, 2012. Thermal Controls on the Asian Summer Monsoon[J]. Sci Rep, 2(5):404.
[10]Zhang Q, Zhang J, Qiao J, et al, 2011. Relationship of atmospheric boundary layer depth with thermodynamic processes at the land surface in arid regions of China[J]. Sci China (Earth Sci), 54 (10):1586-1594
[11]Gao S Y, Zhang J, Luo Q, 2017. Estimation of the heat transfer coefficient over in homogeneous underlying surface on the Qinghai-Tibetan Plateau[J]. Plateau Meteor, 36(3):596-609. DOI:10.7522/j.issn. 1000-0534.2016.00060.<br/>高世仰, 张杰, 罗琦, 2017.青藏高原非均匀下垫面热力输送系数的估算[J].高原气象, 36(3):596-609.
[12]Hong Z X, Qian M W, Hu F, 1998. Determination of atmospheric boundary layer structure by using ground-based remote sensing data[J]. Scientia Atmos Sinica, 22(4):612-624.<br/>洪钟祥, 钱敏伟, 胡非, 1998.由地基遥感资料确定大气边界层特征[J].大气科学, 22(4):612-624.
[13]Huang M F, 2003. Advance of research on surface flux[J]. Journal of Arid and Geography, 26(2):159-165.<br/>黄妙芬, 2003.地表通量研究进展[J].干旱区地理, 26(2):159-165.
[14]Ji J J, Huang M, 2006. The estimation of the surface energy fluxes over Tibetan Plateau.[J]. Adv Earth Sci, 21(12):1268-1272.<br/>季劲钧, 黄玫, 2006.青藏高原地表能量通量的估计[J].地球科学进展, 21(12):1268-1272.
[15]Li G P, Xu Q, 2005. Effect of dynamic pumping in the boundary layer on the Tibetan Plateau vortices[J]. Chinese J Atmos Sci, 29(6):965-972.<br/>李国平, 徐琪, 2005.边界层动力"抽吸泵"对青藏高原低涡的作用[J].大气科学, 29(6):965-972.
[16]Li X, Cheng G D, Lu L, 2003. Comparison study of spatial interpolation methods of air temperature over Qinghai-Xizang Plateau[J]. Plateau Meteor, 22(6):565-573.<br/>李新, 程国栋, 卢玲, 2003.青藏高原气温分布的空间插值方法比较[J].高原气象, 22(6):565-573.
[17]Li Y, Huang M F, 1996. Analysis of land surface evaporation and heat balance in the transitional zone of oasis-desert[J]. Journal of Arid land geography, 19(3):80-87.<br/>李彦, 黄妙芬, 1996.绿洲-荒漠交界处蒸发与地表热量平衡分析[J].干旱区地理, 19(3):80-87.
[18]Liu H Z, Feng J W, Wang L, et al, 2013. Overview of recent studies on atmospheric boundary layer physics at LAPC[J]. Chinese J Atmos Sci, 37(2):467-476.<br/>刘辉志, 冯健武, 王雷, 等, 2013.大气边界层物理研究进展[J].大气科学, 37(2):467-476.
[19]Liu X R, Li G P, Cheng B Y, 2008. The preliminary analysis of the relationships between the surface heat source over the Tibetan Plateau in winter and spring and the summer rainfall over China[J]. Chinese J Atmos Sci, 32(3):561-571.<br/>刘晓冉, 李国平, 程炳岩, 2008.青藏高原前期冬春季地面热源与我国夏季降水关系的初步分析[J].大气科学, 32(3):561-571.
[20]Ma S F, 1990. The characters of the turbulent transports in the surface layer over the Eastern Tibet during the summer 1986[J]. Acta Meteor Sinica, 48(2):210-219.<br/>马淑芬, 1990.1986年夏季西藏东部近地层湍流输送特征的分析[J].气象学报, 48(2):210-219.
[21]Miao M Q, Cao H, Ji J J, 1998. Analysis of turbulent characteristics in atmospheric boundary layer over the Qinghai-Xizhang Plateau.[J]. Plateau Meteor, 17(4):356-363.<br/>苗曼倩, 曹鸿, 季劲钧, 1998.青藏高原大气边界层湍流特征量分析[J].高原气象, 17(4):356-363.
[22]Niu T, Liu H L, Chen L X, 2004. A question when using observation data to get regional averaged value.[J]. J Appl Meteor Sci, 15(2):192-199.<br/>牛涛, 刘洪利, 陈隆勋, 2004.利用观测资料求区域平均值过程中应注意的一个问题[J].应用气象学报, 15(2):192-199.
[23]Peng P, Zhu L P, 2017. Observations of land surface processes of the Tibetan Plateau based on the field stations network[J]. Sci &amp; Tech Review, 35(6):97-102.<br/>彭萍, 朱立平, 2017.基于野外站网络的青藏高原地表过程观测研究[J].科技导报, 35(6):97-102.
[24]Song M H, Wu T W, Qian Z, 2000. Verification of NCEP surface heat fluxes over QXP and its application to summer precipitation forecast.[J]. Plateau Meteor, 19(4):467-475.<br/>宋敏红, 吴统文, 钱正安. 2000.高原地区NCEP热通量再分析资料的检验及在夏季降水预测中的应用[J].高原气象, 19(4):467-475.
[25]Su Z X, Lv S H, Luo Si W, 1999. The examinations and analysis of NCEP/NCAR 40 years global reanalysis data in China.[J]. Plateau Meteor, 18(2):209-218.<br/>苏志侠, 吕世华, 罗四维, 1999.美国NCEP/NCAR全球再分析资料及其初步分析[J].高原气象, 18(2):209-218.
[26]Sun F L, Ma Y M, Ma W Q, et al, 2006. One observational study on atmospheric boundary layer structure in Mt. Qomolangma Region[J]. Plateau Meteor, 25(6):1014-1019.<br/>孙芳林, 马耀明, 马伟强, 等, 2006.珠峰地区大气边界层结构的一次观测研究[J].高原气象, 25(6):1014-1019.
[27]Wan Y X, Zhang Y, Zhang J W, et al, 2017. Influence of sensible heat on planetary boundary layer height in East Asia[J]. Plateau Meteor, 36(1):173-182. DOI:10.7522/j.issn. 1000-0534.2016.00001.<br/>万云霞, 张宇, 张瑾文, 等, 2017.感热变化对东亚地区大气边界层高度的影响[J].高原气象, 36(1):173-182.
[28]Wang D P, Fu Z, Fang J H, et al, 2008. Influence of solar radiation on surface thermal regime of different pavement types and its permafrost underlying embankment on the Qinghai-Tibetan Plateau[J]. Journal of Highway and Transportation Research and Development, 25(3):38-43.<br/>王大鹏, 傅智, 房建宏, 等, 2008.太阳辐射对青藏高原不同路面类型表面热状况及其下伏多年冻土的影响[J].公路交通科技, 25(3):38-43.
[29]Wang X J, Yang M X, Wan G N, 2013. Temporal-spatial distribution and evolution of surface sensible heat flux over Qinghai-Xizhang Plateau during last 60 years.[J]. Plateau Meteor, 32(6):1557-1567. DOI:10.7522/j.issn. 1000-0534.2012.00151.<br/>王学佳, 杨梅学, 万国宁, 2013.近60年青藏高原地区地面感热通量的时空演变特征[J].高原气象, 32(6):1557-1567.
[30]Wei F Y, 2007. Modern climatic statistical diagnosis and prediction technology[M]. Beijing:China Meteorological Press, 46-47, 58-60.<br/>魏凤英, 2007.现代气候统计诊断与预测技术[M].北京:气象出版社:46-47, 58-60.
[31]WEI L, LI D L, 2003. Evaluation of NCEPDOE surface flux data over Qinghai-Xizang Plateau[J]. Plateau Meteor, 22(5):478-487.<br/>魏丽, 李栋梁, 2003.青藏高原地区NCEP新再分析地面通量资料的检验[J].高原气象, 22(5):478-487.
[32]Xu G R, Cui C G, 2009. Observational analysis on atmospheric boundary layer height over eastern Qinghai-Tibet Plateau and its downstream key area[J]. Torrential Rain Disaster, 28(2):112-118.<br/>徐桂荣, 崔春光, 2009.青藏高原东部及下游关键区大气边界层高度的观测分析[J].暴雨灾害, 28(2):112-118.
[33]Xu X D, Zhao T L, Shi X H, et al, 2015. A study of the role of the Tibetan Plateau's thermal forcing in modulating rain band and moisture transport in eastern China[J]. Acta Meteor Sinica, 73(1):20-35.<br/>徐祥德, 赵天良, 施晓晖, 等, 2015.青藏高原热力强迫对中国东部降水和水汽输送的调制作用[J].气象学报, 73(1):20-35.
[34]Xu X D, Chen L S, 2006. Advances of the study on Tibetan Plateau experiment of atmospheric sciences[J]. J Appl Meteor Sci, 17(6):757-772.<br/>徐祥德, 陈联寿, 2006.青藏高原大气科学试验研究进展[J].应用气象学报, 17(6):757-772.
[35]Xu X D, Zhou M Y, Chen J Y, 2001. Dynamic and thermodynamic structure comprehensive physical image of land-atmospheric process on the Qinghai-Tibetan Plateau[J]. Sci China (Earth Sci), 31(5):428-441.<br/>徐祥德, 周明煜, 陈佳宜, 2001.青藏高原地_气过程动力、热力结构综合物理图象[J].中国科学(地球科学), 31(5):428-441.
[36]Zhang J, Zhang Q, Tang C G, 2013. Temporal variety of boundary layer height over deep arid region and the relations with energy balance[J]. Acta Ecologica Sinica, 33(8):2545-2555.<br/>张杰, 张强, 唐从国, 2013.极端干旱区大气边界层厚度时间演变及其与地表能量平衡的关系[J].生态学报, 33(8):2545-2555.
[37]Zhang Q, 2003a. Review of atmospheric boundary layer meterology[J]. J Arid Meteor, 21(3):74-78.<br/>张强, 2003a.大气边界层气象学研究综述[J].干旱气象, 21(3):74-78.
[38]Zhang Q, Cao X Y, 2003b. The influence of synoptic conditions on the averaged surface heat and radiation budget energy over desert or gobi[J]. Chinese J Atmos Sci, 27(2):245-254.<br/>张强, 曹晓彦, 2003b.敦煌地区荒漠戈壁地表热量和辐射平衡特征的研究[J].大气科学, 27(2):245-254.
[39]Zhang Q, Zhao Y D, Wang S, et al, 2007. A study on atmospheric thermal boundary layer structure in extremely arid desert and gobi region on the clear day in summer[J]. Adv Earth Sci, 22 (11):1150-1159.<br/>张强, 赵映东, 王胜, 等, 2007.极端干旱荒漠区典型晴天大气热力边界层结构分析[J].地球科学进展, 22 (11):1150-1159.
[40]Zhao J H, Zhang Q, Wang S, 2011. A simulative study of the thermal mechanism for development of the convective boundary layer in the arid zone of northwest China[J]. Acta Meteor Sinica, 69(6):1029-1037.<br/>赵建华, 张强, 王胜, 2011.西北干旱区对流边界层发展的热力机制模拟研究[J].气象学报, 69(6):1029-1037.
[41]Zhao S N, Hong Z X, Hu F, 1992. Observation test on turbulence of boundary layer and its dynamic characteristic research[J]. Progress Natural Sci, 2(2):104-111.<br/>赵松年, 洪钟祥, 胡非, 1992.大气边界层湍流的综合观测实验及其动力学特征的研究[J].自然科学进展, 2(2):104-111.
[42]Zhou M Y, Xu X D, Bian L G, et al, 2000. Observational analysis and dynamic study of atmospheric boundary layer on Tibetan Plateau[M]. Beijing:China Meteorological Press, 52-56.<br/>周明煜, 徐祥德, 卞林根, 等, 2000.青藏高原大气边界层观测分析与动力学研究[M].北京:气象出版社, 52-56.
[43]Zhou Q, Zhao F S, Gao W H, 2008. Comparison and analysis between NCEP/NCAR every-6-hours analysis land surface and air temperature and 753 Chinese stations' observation in 2005[J]. Meteor Mon, 34(2):83-91.<br/>周青, 赵凤生, 高文华, 2008. NCEP/NCAR逐时分析与中国实测地表温度和地面气温对比分析[J].气象, 34(2):83-91.
[44]Zhu C L, Ma Y M, Chen X L, 2011. Atmospheric boundary layer structure in the west and the southeastern periphery of the Tibetan Plateau during the Pre-monsoon period[J]. Journal of Glaciology and Geocryology, 33(2):325-333.<br/>朱春玲, 马耀明, 陈学龙, 2011.青藏高原西部及东南周边地区季风前大气边界层结构分析[J].冰川冻土, 33(2):325-333.
[45]Zhu X Y, Liu Y M, Wu G X, 2012. An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets[J]. Sci China (Earth Sci), 2(7):1104-1112.<br/>竺夏英, 刘屹岷, 吴国雄, 2012.夏季青藏高原多种地表感热通量资料的评估[J].中国科学(地球科学), 42(7):1104-1112.
[46]Zhuo G, Deji Z M, Nima J, 2017. Distribution of soil moisture over the Qinghai-Tibetan Plateau and its effect on the precipitation in June and July over the mid-lower reaches of Yangtze River Basin[J]. Plateau Meteor, 36(3):657-666. DOI:10.7522/j.issn. 1000-0534.2016.00073.<br/>卓嘎, 德吉卓玛, 尼玛吉, 2017.青藏高原土壤湿度分布特征及其对长江中下游6、7月降水的影响[J].高原气象, 36(3):657-666.
[47]Zhuo G, Xu X D, Chen L S, 2002. Dynamical effect of boundary layer characteristics of Tibentan plateau on general circulation[J]. J Appl Meteor Sci, 13(2):163-169.<br/>卓嘎, 徐祥德, 陈连寿, 2002.青藏高原边界层高度特征对大气环流动力学效应的数值试验[J].应用气象学报, 13(2):163-169.
Outlines

/