Model Estimation and Validation of the Surface Energy Fluxes at Typical Underlying Surfaces over the Qinghai-Tibetan Plateau

  • HU Yuanyuan ,
  • ZHONG Lei ,
  • MA Yaoming ,
  • ZOU Mijun ,
  • HUANG Ziyu ,
  • XU Kepiao ,
  • FENG Lu
Expand
  • Key Laboratory of Atmospheric Composition and Optical Radiation, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China;Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100101, China;Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Chinese Academy of Sciences, Beijing 100101, China;Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China;Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou 510080, Guangdong, China

Received date: 2017-12-05

  Online published: 2018-12-28

Abstract

The surface energy fluxes occur near the ground and are pivotal parameters for studying land-atmosphere interaction. The Qinghai-Tibetan Plateau is one of the most sensitive regions in response to global climate change. Its thermal and dynamic effects on the atmosphere are mainly achieved through the exchange of heat and water vapor between the land surface and the atmosphere. The estimation and validation of the surface energy fluxes over the Tibetan Plateau have great significance on the study of energy and water cycle in the Qinghai-Tibetan Plateau and its surrounding regions. The surface energy balance system (SEBS) model provides an effective method for studying the surface energy fluxes over the heterogeneous underlying surface. In order to further explore applicability of the model estimation for the typical underlying surface over the Tibetan Plateau, based on in-situ radiation data and Atmospheric Boundary Layer (ABL) tower data (Nagqu Station of Plateau Climate and Environment (BJ), Nam Co Station for Multisphere Observation and Research (Nam Co) and Qomolangma Station for Atmospheric Environmental Observation and Research (QOMS), Chinese Academy of Sciences (CAS)) and combined with MODIS data in 2008, the SEBS model was used to estimate the surface energy fluxes which were validated with the in-situ measurements. The results showed that the sensible heat flux and soil heat flux estimated by the model were in good agreement with the in-situ measurements, and the estimation accuracy of sensible heat flux and soil heat flux was obviously better than that of latent heat flux. The estimation accuracy of the sensible heat flux was the highest, and their root mean square error (stations BJ, Nam Co and QOMS) were 54.98 W·m-2, 37.37 W·m-2, 27.10 W·m-2, respectively. The error of the latent heat flux of the model estimated is relatively large, which is caused by the energy closure problem in the in-situ measurements. Taking the imbalance of energy closure prevails in most surface energy fluxes measurements into account, the latent heat flux measurements were corrected by using the Bowen ratio correction method. Results showed that the Bowen ratio correction method could significantly improve the energy imbalance problem. The closure ratios of surface energy balance (stations BJ, Nam Co and QOMS) were increased by 19.4%、21.4%、19.1%, respectively. Accordingly, the corrected latent heat flux had better consistency with model estimation results. The root mean square error of estimated latent heat flux decreased by 6.78 W·m-2(BJ), 33.48 W·m-2(Nam Co), 29.30 W·m-2(QOMS), respectively.

Cite this article

HU Yuanyuan , ZHONG Lei , MA Yaoming , ZOU Mijun , HUANG Ziyu , XU Kepiao , FENG Lu . Model Estimation and Validation of the Surface Energy Fluxes at Typical Underlying Surfaces over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018 , 37(6) : 1499 -1510 . DOI: 10.7522/j.issn.1000-0534.2018.00045

References

[1]Allen R G, Tasumi M, Morse A, et al, 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Applications[J]. J Irrig Drain Eng, 133(4):395-406.
[2]Bastiaanssen W G, Menenti M, Feddes R, et al, 1998a. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation[J]. J Hydrol, 212:198-212.
[3]Bastiaanssen W G, Pelgrum H, Wang J, et al, 1998b. A remote sensing surface energy balance algorithm for land (SEBAL):Part 2:Validation[J]. J Hydrol, 212:213-229.
[4]Chen X, Su Z, Ma Y, et al, 2013. Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau[J]. Hydrol Earth Syst Sci, 17(4):1607-1618.
[5]Foken T, Wichura B, 1996. Tools for quality assessment of surface-based flux measurements[J]. Agri For Meteor, 78(1-2):83-105.
[6]Foken T, G?ockede M, Mauder M, et al, 2004. Post-field data quality control[C]//Handbook of micrometeorology. Bostons: Kluwer Academic: 181-208.
[7]Foken T, 2008. The energy balance closure problem:An overview[J]. Ecol Appl, 18(6):1351-1367.
[8]Huang C, Li Y, Gu J, et al, 2015. Improving estimation of evapotranspiration under water-limited conditions based on sebs and MODIS data in arid regions[J]. Remote Sens, 7(12):16795-16814.
[9]Jia L, Su Z, van den Hurk B, et al, 2003. Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements[J]. Phys Chem Earth, Parts A/B/C, 28(1):75-88.
[10]Lee X, Hu X, 2002. Forest-air fluxes of carbon, water and energy over non-flat terrain[J]. Bound-Layer Meteor, 103(2):277-301.
[11]Liu X, Chen B, 2000. Climatic warming in the Tibetan Plateau during recent decades[J]. Int J Climatol, 20(14):1729-1742.
[12]Ma Y, Su Z, Li Z, et al, 2002a. Determination of regional net radiation and soil heat flux over a heterogeneouslandscape of the Tibetan Plateau[J]. Hydrol Proc, 16(15):2963-2971.
[13]Ma Y, Tsukamoto O, Ishikawa H, 2002b. Remote sensing parameterization of the processes of energy and water cycle over desertification areas[J]. Sci China, Ser D Earth Sci, 45:47-53.
[14]Majozi N P, Mannaerts C M, Ramoelo A, et al, 2017. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa[J]. Hydrol Earth Syst Sci, 21(7):3401.
[15]Mauder M, Oncley S P, Vogt R, et al, 2007. The energy balance experiment EBEX-2000. Part Ⅱ:Intercomparison of eddy-covariance sensors and post-field data processing methods[J]. Bound-Layer Meteor, 123(1):29-54.
[16]Norman J, Kustas W, Humes K, 1995. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature[J]. Agr Forest Meteor, 77:263-293.
[17]Oncley S P, Foken T, Vogt R, et al, 2007. The energy balance experiment EBEX-2000. Part Ⅰ:overview and energy balance[J]. Bound-Layer Meteor, 123(1):1-28.
[18]Pan X, Liu Y, Fan X, et al, 2017. Two energy balance closure approaches:applications and comparisons over an oasis-desert ecotone[J]. J Arid Land, 9(1):51-64.
[19]Roerink G, Su Z, Menenti M, 2000. S-SEBI:A simple remote sensing algorithm to qestimate the surface energy balance[J]. Phys Chem Earth, Part B, 25(2):147-157.
[20]Sánchez J, Scavone G, Caselles V, et al, 2008. Monitoring daily evapotranspiration at a regional scale from Landsat-TM and ETM+ data:Application to the Basilicata region[J]. J Hydrol, 351(1):58-70.
[21]Seneviratne S I, St?ckli R, 2008. The role of land-atmosphere interactions for climate variability in Europe[C]. Climate Variability and Extremes During the Past 100 years, Switzerland, Springer: 179-193.
[22]Shoko C, Clark D, Mengistu M, et al, 2015. Effect of spatial resolution on remote sensing estimation of total evaporation in the uMngeni catchment, South Africa[J]. J Appl Remote Sens, 9(1):095997.
[23]Sobrino J, El K J, Li Z L, 2003. Surface temperature and water vapour retrieval from MODIS data[J]. Int J Remote Sens, 24(24):5161-5182.
[24]Su H, McCabe M, Wood E, et al, 2005. Modeling evapotranspiration during SMACEX:Comparing two approaches for local-and regional-scale prediction[J]. J Hydromet, 6(6):910-922.
[25]Su Z, 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrol Earth Syst Sci, 6(1):85-100.
[26]Su Z, Zhang T, Ma Y, et al, 2006. Energy and water cycle over the Tibetan Plateau:surface energy balance and turbulent heat fluxes[J]. Adv Earth Sci, 21(12):1224-1236.
[27]Twine T E, Kustas W, Norman J, et al, 2000. Correcting eddy-covariance flux underestimates over a grassland[J]. Agr Forest Meteor, 103(3):279-300.
[28]Wilson K, Goldstein A, Falge E, et al, 2002. Energy balance closure at FLUXNET sites[J]. Agr Forest Meteor, 113(1):223-243.
[29]Wolf A, Saliendra N, Akshalov K, et al, 2008. Effects of different eddy covariance correction schemes on energy balance closure and comparisons with the modified Bowen ratio system[J]. Agr Forest Meteor, 148(6):942-952.
[30]Yang K, Wang J, 2008. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J]. Sci China, Ser D Earth Sci, 51(5):721-729.
[31]Zhong L, Ma Y, Salama M S, et al, 2010. Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau[J]. Climat Change, 103(3-4):519-535.
[32]Zuo H, Xiao X, Yang Q, et al, 2012. On the atmospheric movement and the imbalance of observed and calculated energy in the surface layer[J]. Sci China, Ser D Earth Sci, 55(9):1518.
[33]Ding Y H, 1997. On some aspects of estimates of the surface fluxes[J]. Quart J Appl Meteor, 8 (S1):29-35.<br/>丁一汇, 1997.地表通量的计算问题[J].应用气象学报, 8(S1):29-35.
[34]Fang Y L, Sun S F, Li Q, et al, 2010. The optimization of parameters of land surface model in arid region and the simulation of land-atmosphere interaction[J]. Chinese J Atmos Sci, 34 (2):290-306.<br/>房云龙, 孙菽芬, 李倩, 等, 2010.干旱区陆面过程模型参数优化和地气相互作用特征的模拟研究[J].大气科学, 34(2):290-306.
[35]Feng L, Zhong L, Ma Y M, et al, 2016. Estimation of soil heat flux over the northern Qinghai-Xizang Plateau based on in-situ soil temperature and moisture data[J]. Plateau Meteor, 35(2):297-308. DOI:10.7522/j.issn. 1000-0534.2015.00006.<br/>冯璐, 仲雷, 马耀明, 等, 2016.基于土壤温湿度观测资料估算藏北高原地区土壤热通量[J].高原气象, 35(2):297-308.
[36]Ge J, Yu Y, Li Z C, et al, 2016. Impacts of freeze/thaw processes on land surface energy fluxes in the permafrost region of Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(3):608-620. DOI:10.7522/j.issn. 1000-0534.2016.00032.<br/>葛骏, 余晔, 李振朝, 等, 2016.青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J]高原气象, 35(3):608-620.
[37]Huang C L, Li Y, Lu L, et al, 2014. Estimation of surface fluxes under drought water stress conditions based on remotely sensed data[J]. Adv Water Sci, 25(2):181-188.<br/>黄春林, 李艳, 卢玲, 等, 2014.考虑干旱水分胁迫的地表通量遥感估算[J].水科学进展, 25(2):181-188.
[38]Jin X J, Zhou J, 2017. Analysis of spatial-temporal characteristics of evapotranspiration in the lower reaches of Heihe River based on surface energy balance system model and Landsat 8 data[J]. J Glaciol Geocryol, 39(3):572-582.<br/>金学杰, 周剑, 2017.基于SEBS模型和Landsat 8数据的黑河下游蒸散发时空特性分析[J].冰川冻土, 39(3):572-582.
[39]Ma Y M, Osamu T, Wu X M, et al, 2000. Characteristics of energy transfer and micrometeorology in the surface layer of the atmosphere above grassy marshland of the Tibetan Plateau area[J]. Chinese J Atmos Sci, 24 (5):715-722.<br/>马耀明, 塚本修, 吴晓鸣, 等, 2000.藏北高原草甸下垫面近地层能量输送及微气象特征[J].大气科学, 24(5):715-722.
[40]Ma Y M, Yao T D, Wang J M, et al, 2006. The study on the land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau[J]. Adv Earth Sci, 21(12):1215-1223.<br/>马耀明, 姚檀栋, 王介民, 等, 2006.青藏高原复杂地表能量通量研究[J].地球科学进展, 21(12):1215-1223.
[41]Ma Y M, 2012. The observation of water-ice-air-ecosystem interactions and its application over the Tibetan Plateau area[J]. Eng Sci, 14(9):28-34.<br/>马耀明, 2012.青藏高原多圈层相互作用观测工程及其应用[J].中国工程科学, 14(9):28-34.
[42]Tian H, Wen J, Ma Y M, et al, 2009. Estimation of summer evapotrauspiration using satellite remote sensing data over the Heihe river basi[J]. Adv Water Sci, 20(1):18-24.<br/>田辉, 文军, 马耀明, 等, 2009.夏季黑河流域蒸散发量卫星遥感估算研究[J].水科学进展, 20(1):18-23.
[43]Wang G H, Zhao W Z, 2011. Advances in the application of remote sensing to evapotrauspiration research in arid regions[J]. Adv Earth Sci, 26(8):848-858.<br/>王国华, 赵文智, 2011.遥感技术估算干旱区蒸散发研究进展[J].地球科学进展, 26(8):848-858.
[44]Wang J M, 2012. Guidelines for making eddy covariance flux measurements[EB/OL]. <a href="http://www.hydrolab.cn/pt/download/woduxiangguantongliangguancezhidaoshouce.pdf" target="_blank">http://www.hydrolab.cn/pt/download/woduxiangguantongliangguancezhidaoshouce.pdf</a>.<br/>王介民, 2012.涡动相关通量观测指导手册[EB/OL]. <a href="http://www.hydro-lab.cn/pt/download/woduxiangguantongliangguancezhidaoshouce.pdf" target="_blank">http://www.hydro-lab.cn/pt/download/woduxiangguantongliangguancezhidaoshouce.pdf</a>.
[45]Wang J M, Wang W Z, Ao Y H, et al, 2007. Turbulence flux measurements under complicated conditions[J]. Adv Earth Sci, 22(8):791-797.<br/>王介民, 王维真, 奥银焕, 等, 2007.复杂条件下湍流通量的观测与分析[J].地球科学进展, 22(8):791-797.
[46]Wang J M, Wang W Z, Liu S M, et al, 2009. The problems of surface energy balance closure-an overview and case study[J]. Adv Earth Sci, 24(7):705-713.<br/>王介民, 王维真, 刘绍民, 等, 2009.近地层能量平衡闭合问题-综述及个例分析[J].地球科学进展, 24(7):705-713.
[47]Xie J, Yu Y, Liu C, et al, 2018. Characteristics of surface sensible heat flux over the Qinghai-Tibetan Plateau and its response to climate change[J]. Plateau Meteor, 37(1):28-42. DOI:10.7522/j.issn. 1000-0534.2016.00032<br/>解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象, 37(1):28-42.
[48]Yang J, Ma Y M, 2012. Soil temperature and moisture features of typical underlying surface in the Tibetan Plateau[J]. J Glaciol Geocryol, 34(4):813-820.<br/>杨健, 马耀明, 2012.青藏高原典型下垫面的土壤温湿特征[J].冰川冻土, 34(4):813-820.
[49]Ye D Z, 1979. Progress of atmospheric science research in China in recent years[J]. Chinese J Atmos Sci, 3(3):195-202.<br/>叶笃正, 1979.近年来我国大气科学研究的进展[J].大气科学, 3(3):195-202.
[50]Ye D Z, Fu C B, 1994. Major issues of global change sciences[J]. Chinese J Atmos Sci, 18(4):498-512.<br/>叶笃正, 符淙斌, 1994.全球变化的主要科学问题[J].大气科学, 18(4):498-512.
[51]Yang K, Wang J M, 2008. A temperature prediction correction method for estimating surface soil heat flux from soil temperature and moisture data[J]. Sci China, ser D Earth Sci, 38(2):243-250.<br/>阳坤, 王介民, 2008.一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法[J].中国科学:D辑, 38(2):243-250.
[52]Zhou Y, Gao X Q, Li Z C, et al, 2017. Analysis of the characteristics of deep soil heat flux in Qinghai-Tibetan Plateau[J]. Plateau Meteor, 36(2):307-316. DOI:10.7522/j.issn.1000-0534.2016.00120.<br/>周亚, 高晓清, 李振朝, 等, 2017.青藏高原深层土壤热通量的变化特征分析[J].高原气象, 36(2):307-316.
[53]Zhang C C, Li D L, Wang H, et al, 2017. Characteristics of the surface sensible heat on the Qinghai-Xizang Plateau in the spring and its influences on the summertime rainfall pattern over the Eastern China[J]. Plateau Meteor, 36(1):13-23. DOI:10.7522/j.issn.1000-0534.2016.00028.<br/>张长灿, 李栋梁, 王慧, 等, 2017.青藏高原春季地表感热特征及其对中国东部夏季雨型的影响[J].高原气象, 36(1):13-23.
Outlines

/