Detection of Fog at Night by Using the New Geostationary Satellite Himawari-8

  • WANG Hongbin ,
  • ZHANG Zhiwei ,
  • LIU Duanyang ,
  • YUAN Chengsong ,
  • ZHOU Linyi ,
  • QIAN Wei
Expand
  • Key Laboratory of Transportation Meteorology of China Meteorological Administration, Jiangsu Institute of Meteorological Sciences, Nanjing 210009, Jiangsu, China;Jiangsu Meteorological Service Center, Nanjing 210008, Jiangsu, China;Jiangsu Meteorological Observatory, Nanjing 210008, Jiangsu, China

Received date: 2017-12-26

  Online published: 2018-12-28

Abstract

Himawari-8 is the new geostationary satellite of the Japan Meteorological Agency (JMA) and carries the Advanced Himawari Imager (AHI), which is greatly improved over past imagers in terms of its number of bands and its temporal/spatial resolution. In this work, two different methods for the detection of the different levels of fog at night by using the Himawari-8 were developed in China. The two different methods are the method of the difference between the 11.2 μm and 3.9 μm brightness temperatures (BTD3.9~11.2) and the method of 3.9 μm Pseudo-Emissivity (ems3.9). The 3.9 μm Pseudo-Emissivity is the ratio of the observed 3.9 μm radiance and the 3.9 μm blackbody radiance calculated using the 11.2 μm brightness temperature. We identified the parameters optimal threshold at the 2 400 stations and the grid points using the BTD3.9~11.2 and ems3.9 for different levels of fog. Results on land and sea from the two methods were compared with surface observations from 2 400 weather stations in China and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) VFM (Vertical Feature Mask) products. The results showed that both the method of BTD3.9~11.2 and the method of ems3.9 can accurately identify the different levels of fog and the accuracy of ems3.9 method is slightly better than the BTD3.9~11.2. The accuracy of two methods has increased significantly and the false alarm rate has significantly decreased with the decrease of the visibility. When the visibility was less than 50 m, the HR, FAR and KSS of the BTD3.9~11.2 method (the ems3.9 method) were 0.89 (0.90), 0.15 (0.15) and 0.74 (0.75), respectively. When mid-or high-level clouds were removed using surface temperature of the ground observations, the HR and KSS of two methods for the different levels of fog has increased significantly, and the FAR has significantly decreased. When the visibility was less than 1 000 m, the HR of the BTD3.9~11.2 method (the ems3.9 method) was increased to 0.81(0.85) from 0.71 (0.74), the FAR was decreased to 0.12 (0.13) from 0.27 (0.28), and the KSS was increased to 0.69 (0.72) from 0.44 (0.46). The KSS of two method increased by 0.23 and 0.26, respectively. Three cases analysis showed that the fog area can be clearly identified by using the BTD3.9~11.2, ems3.9 and RGB composite image. The results of the detection of sea fog by using Himawari-8 data and using CALIPSO VFM products have consistency.

Cite this article

WANG Hongbin , ZHANG Zhiwei , LIU Duanyang , YUAN Chengsong , ZHOU Linyi , QIAN Wei . Detection of Fog at Night by Using the New Geostationary Satellite Himawari-8[J]. Plateau Meteorology, 2018 , 37(6) : 1749 -1764 . DOI: 10.7522/j.issn.1000-0534.2018.00037

References

[1]Bendix J, 2002.A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas[J]. Atmos Res, 64(1), 3-18.
[2]Bendix J, Thies B, Cermak J, et al, 2005.Ground fog detection from space based on MODIS daytime data:A feasibility study[J]. Wea Forecasting, 20(6):989-1005.
[3]Calvert C, 2011.GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for low cloud and fog. ATBD Algorithm Theoretical Basis Document, Version 2.0, 1-75.
[4]Eyre J R, Brownscombe J L, Allam R J, 1984.Detection of fog at night using AVHRR imagery[J]. Meteor Magazine, 113, 266-271.
[5]Ellrod G P, 1995.Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery[J]. Wea Forecasting, 10(3), 606-619.
[6]Ellrod G P, 2002.Estimation of low cloud base heights at night from satellite infrared and surface temperature data[J]. National Weather Digest, 26 (1):39-44.
[7]Fu G, Guo J T, Pendergrass A, et al, 2008.An analysis and modeling study of a sea fog event over the Yellow and Bohai Seas[J]. Journal of Ocean University of China, 7(1):27-34.
[8]Gultepe I, Pagowski M, Reid J, 2007.A satellite-based fog detection scheme using screen airtemperature[J]. Wea Forecasting, 22(3), 444-456.
[9]Lee T F, Turk F J, Richardson K, 1997.Stratus and fog products using GOES-8-9 3.9 μm data[J]. Wea Forecasting, 12(3), 664-677.
[10]Liu Z, Vaughan M, Winker D, et al, 2009.The CALIPSO lidar cloud and aerosol discrimination:Version 2 algorithm and initial assessment of performance[J]. J Atmos Ocean Technol, 26(7), 1198-1213.
[11]Omar A H, Winker D, WON J, 2004.Aerosol models for the CALIPSO lidar inversion algorithms[C]. Laser Radar Technology for Remote Sensing, 5240, 153-165.
[12]Turk J, Vivekanandan J, Lee T, et al, 1998.Derivation and applications of near-infrared cloud refflectances from GOES-8 and GOES-9[J]. J Appl Meteor, 37(8):819-831.
[13]Turner J, Allam R J, Maine D R, 1986.Case study of the detection of fog at night using channels 3 and 4 on the Advanced Very High Resolution Radiometer (AVHRR)[J]. Meteor Magazine, 115 (1370):285-290.
[14]Wang H B, Zhang L, Cao X J, et al, 2013.A-Train satellite measurements of dust aerosol distributions over northern China[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 122:170-179.
[15]Wetzel M A, Borys R D, Xu L E, 1996.Satellite microphysical retrievals for land-based fog with validation by balloon profiling[J]. J Appl Meteor, 35(6), 810-829.
[16]Winker D M, Hunt W H, McGill M J, 2007.Initial performance assessment of CALIOP[J]. Geophys Res Lett, 34(19):1-5.
[17]Winker D M, Vaughan M A, Omar A, et al, 2009.Overview of the CALIPSO mission and CALIOP data processing algorithms[J]. J Atmos Ocean Technol, 26(11):2310-2323.
[18]Wu D, Lu B, Zhang T, et al, 2015.A method of detecting sea fogs using CALIOP data and its application to improve MODIS-based sea fog detection[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 153:88-94.
[19]Yi L, Zhang S P, Thies B, et al, 2015.Spatio-temporal detection of fog and low stratus top heights over the Yellow Sea with geostationary satellite data as a precondition for ground fog detection:a feasibility study[J]. Atmos Res, 151:212-223.
[20]Yoo J M, Jeong M J, Hur Y M, et al, 2010.Improved fog detection from satellite in the presence of Clouds[J]. Asia-Pacific J Atmos Sci, 46(1):29-40.
[21]Yoo J M, Jeong M J, Yun M Y, 2006.Optical properties of fog from satellite observation (MODIS) and numerical simulation[J]. Asia-Pacific J Atmos Sci, 42(5), 291-305.
[22]Zhang S, Yi L, 2013.A comprehensive dynamic threshold algorithm for daytime sea fog retrieval over the Chinese adjacent seas[J]. Pure and Applied Geophysics, 170(11):1931-1944.
[23]Chen L, Niu S J, Zhong L Z, 2006.Detection and analysis of fog based on MODIS data[J]. Journal of Nanjing Institute of Meteorology, 29(4):448-454.<br/>陈林, 牛生杰, 仲凌志, 2006.MODIS监测雾的方法及分析[J].南京气象学院学报, 29(4):448-454.
[24]Deng Y J, Tian Y J, Wang J C, 2016.Dynamic detection of daytime sea fog using geostationary meteorological satellite data[J]. Sci Geograp Sinica, 36(10):1581-1587.<br/>邓玉娇, 田永杰, 王捷纯, 2016.静止气象卫星资料在白天海雾动态监测中的应用[J].地理科学, 36(10):1581-1587.
[25]He Y, Zhang X W, Cai J Z, et al, 2015.Distribution characteristics of the fog derived from the MTSAT satellite data in Zhejiang Province and its adjacent sea area[J]. Acta Meteor Sinica, 73(1):200-210.<br/>何月, 张小伟, 蔡菊珍, 等, 2015.基于MTSAT卫星遥感监测的浙江省及周边海区大雾分布特征[J].气象学报, 73(1):200-210.
[26]Huang Z G, Pan C M, Wang G G, et al, 2010.Study on the technique of sea fog detection using MODIS data[J]. Hydrographic Surveying and Charing, 30(2):70-73.<br/>黄子革, 潘长明, 王贵钢, 等, 2010.MODIS卫星海雾检测技术研究[J].海洋测绘, 30(2):70-73.
[27]Jiang L L, Wei M, 2011.Application of fog monitoring with FY-3A data[J]. Remote Sens Technol Appl, 26(4):489-495.<br/>蒋璐璐, 魏鸣, 2011.FY-3A卫星资料在雾监测中的应用研究[J].遥感技术与应用, 26(4):489-495.
[28]Ju W M, Sun H, Zhang Z Y, et al, 1997.The preliminary application on the fog monitoring in Huning expressway based on remote sensing satellite data[J]. Remote Sens Inf, 12(3):25-27.<br/>居为民, 孙涵, 张忠义, 等, 1997.卫星遥感资料在沪宁高速公路大雾监测中的初步应用[J].遥感信息, (3):25-27.
[29]Li J, Han Z G, Chen H B et al, 2011.Detection of heavy fog events over North China Plain by using the geostationary satellite data[J]. Remote Sens Technol Appl, 26(2):186-195.<br/>李军, 韩志刚, 陈洪滨, 等, 2011.静止气象卫星遥感探测华北平原秋季大雾研究[J].遥感技术与应用, 26(2):186-195.
[30]Li Y C, Sun H, Li X G, et al, 2001.Study on detection of daytime fog using GMS-5 weather satellite data[J]. Journal of Nanjing Institute of Meteorology, 24(3):121-129.<br/>李亚春, 孙涵, 李湘阁, 等, 2001.用GMS-5气象卫星资料遥感监测白天雾的研究[J].南京气象学院学报, 24(3):121-129.
[31]Li Z H, Huang J P, Zhou Y Q, et al, 1999.Physical structures of the five-day sustained fog around Nanjing in 1996[J]. Acta Meteor Sinica, 57(5):622-631.<br/>李子华, 黄建平, 周毓荃, 等, 1999.1996年南京连续5天浓雾的物理结构特征[J].气象学报, 57(5):622-631.
[32]Li Z H, Liu D Y, Yang J, 2011.The microphysical processes and macroscopic conditions of the radiation fog droplet spectrum broadening[J]. Chinese J Atmos Sci, 35(1):41-54.<br/>李子华, 刘端阳, 杨军, 2011.辐射雾雾滴谱拓宽的微物理过程和宏观条件[J].大气科学, 35(1):41-54.
[33]Liu J, Xu J M, Fang Z Y, 1999.Analysis of the particle sizes at top of cloud and fog with NOAA/AVHRR data[J]. Quart J Appli Meteor, 10(1):28-33.<br/>刘健, 许建民, 方宗义, 1999.利用NOAA卫星的AVHRR资料试分析云和雾顶部粒子的尺度特征[J].应用气象学报, 10(1):28-33.
[34]Ma H Y, Li D R, Liu L M, et al, 2005.Fog detection based on EOS MODIS data[J]. Geomatics and Information Science of Wuhan University, 30(2):143-145.<br/>马慧云, 李德仁, 刘良明, 等, 2005.基于MODIS卫星数据的平流雾检测研究[J].武汉大学学报信息科学版, 30(2):143-145.
[35]Min A L, Liu L, Zhang T F, et al, 2017.Application of MODIS and HJ-1B data on monitoring fog in Jiangsu Province[J]. Meteor Environ Sci, 40(1):102-107.<br/>闵爱莲, 刘磊, 张天风, 等, 2017.MODIS和HJ-1B资料在江苏大雾监测中的应用[J].气象与环境科学, 40(1):102-107.
[36]Sun X C, Han Y Q, Li J, et al, 2017.Analysis of the influence of vertical movement on the process of fog and haze with air pollution[J]. Plateau Meteor, 36(4):1106-1114.DOI:10.7522/j.issn. 1000-0534.2016.00076.<br/>孙兴池, 韩永清, 李静, 等, 2017.垂直运动对雾-霾及空气污染过程的影响分析[J].高原气象, 36(4):1106-1114.
[37]Wu B G, Ma C P, Cai Z Y et al, 2014.Mechanisms of local explosive development of a radiation fog event[J]. Plateau Meteor, 33(5):1393-1402.DOI:10.7522/j.issn. 1000-0534.2013.00066.<br/>吴彬贵, 马翠平, 蔡子颖, 等, 2014.辐射雾局地爆发性增强原因探讨[J].高原气象, 33(5):1393-1402.
[38]Wu D, Deng X J, Mao J T, et al, 2007.A study on macro-and micro-structures of heavy fog and visibility at freeway in the Nanling Dayaoshan mountain[J]. Acta Meteor Sinica, 65(3):406-415.<br/>吴兑, 邓雪娇, 毛节泰, 等, 2007.南岭大瑶山高速公路浓雾的宏微观结构与能见度研究[J].气象学报, 65(3):406-415.
[39]Wu X J, Li S M, Liao M, et al, 2015.Analyses of seasonal feature of sea fog over the Yellow Sea and Bohai Sea based on the recent 20 years of satellites remote sensing data[J]. Acta Oceanologica Sinica, 37(1):63-72.<br/>吴晓京, 李三妹, 廖蜜, 等, 2015.基于20年卫星遥感资料的黄海、渤海海雾分布季节特征分析[J].海洋学报, 37(1):63-72.
[40]Wu X J, Zhu J, Wang X, et al, 2017.Sea fog simulation with assimilation of FY-3A microwave data[J]. Chinese J Atmos Sci, 41(3):421-436.<br/>吴晓京, 朱江, 王曦, 等, 2017.风云三号微波观测资料的海雾同化模拟[J].大气科学, 41(3):421-436.
[41]Zhang C G, Cai Y Y, Zhang J C, et al, 2009.The application of monitoring sea fog in Taiwan strait using MODIS remote sensing data[J]. J Appl Meteor Sci, 20(1):8-16.<br/>张春桂, 蔡义勇, 张加春, 等, 2009.MODIS遥感数据在我国台湾海峡海雾监测中的应用[J].应用气象学报, 20(1):8-16.
Outlines

/