Analysis of Meso-Small Scale System Characteristics of a Rare Severe Convective Weather in the Northeast Part of Qinghai-Tibetan Plateau

  • ZHU Ping ,
  • YU Xiaoding
Expand
  • School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;Meteorological Observatory of Qinghai Province, Xining 810001, Qinghai, China;China Meteorological Administration Training Center, Beijing 100081, China

Received date: 2018-05-15

  Online published: 2019-02-28

Abstract

A rare severe convective weather process with the large hailstone, local short-time rainstorm, and thunderstorm gale occurred over northeast part of Qinghai-Tibetan Plateau from 17 to 18 August 2016. The genesis and development and propagation mechanism of the meso-small scale convective system, and the atmospheric environment field were all analyzed by using the datum of conventional observation, NCEP reanalysis, himawari-8 satellite, C and X band Doppler radar, etc. And the characteristics between hail echo and rain echo were contrasted too. The results show that:It belonged to the low-level warm advection forcing type because of the obvious lifting northward of Subtropical High over west Pacific. The Water vapor was transported mainly from the South China Sea, and the Bay of Bengal next. The starting and trigger mechanism of sever convection was the weak cold front on surface with a longer life. Convective clouds gradually evolved into mesoscale convection complex (MCC), and the convection propagated toward unstable Atmospheric stratification zone and backward inflow wind of low-level along Huangshui river valley as a whole, and the convective motion dominated by propagation due to the weak inflow wind. The river valley topography was the key to the moving and propagation path of convection. All severe convective cells had comparatively long life cycle, the strong hail cells were similar-supercells and common multi-cells, and the heavy precipitation cells belonged to the multi-cell linear convection. The strong hail cells generally developed stronger and changed more greatly than the heavy precipitation cells, such as the former had stronger echo intensity, higher organization degree, longer life cycle mesocyclone, higher echo top and echo centroid, and most echo parameters had greater changes, especially VIL (vertical integrated liquid water content). In addition, the strong echo pendency located over the weak echo region in the former cells, etc. But before the beginning of severe convection, the VIL almost increased first and then dropped, and the maximum echo intensity exceeded 60 dBZ but changed relatively small both in the hail and precipitation cells. The four positions of thunderstorm gale were generated by the strongly down-divergence flow, that was produced by greater negative buoyancy due to strong temperature-fall period of weak rain of thunder clouds evaporation in thicker dry air level, or the drag of heavy precipitation in linear convection accompanied with dry air entrainment raindrops. The characteristics in radar echo presented the sharp decline of centroid height and mid-altitude radial convergence (MARC).

Cite this article

ZHU Ping , YU Xiaoding . Analysis of Meso-Small Scale System Characteristics of a Rare Severe Convective Weather in the Northeast Part of Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2019 , 38(1) : 1 -13 . DOI: 10.7522/j.issn.1000-0534.2018.00070

References

[1]Corfidi S F, Merritt J H, Fritsch J M, 1966. Predicting the movement of mesoscale convective complexes[J]. Weather Forecasting, 11:41-46.
[2]Corfidi S F, 2003. Cold pools and MCS propogation:forecasting the motion of downwind-developing MCSs[J]. Weather Forecasting, 18:997-1017.
[3]Zhu G F, Chen S J, 2003. A numerical case study on a mesoscale convective system over the Qinghai-Xizang (Tibetan) Plateau[J]. Advances in Atmospheric Sciences, 20(3):385-397.
[4]俞小鼎, 王迎春, 陈明轩, 等, 2005.新一代天气雷达与强对流天气预警[J].高原气象, 24(3):456-464.
[5]俞小鼎, 周小刚, 王秀明, 2012.雷暴与强对流临近天气预报技术进展[J].气象学报, 70(3):311-337.
[6]俞小鼎, 2013.短时强降水临近预报的思路和方法[J].暴雨灾害, 32(3):202-209.
[7]俞小鼎, 2014.关于冰雹的融化层高度[J].气象, 40(6):649-654.
[8]郑永光, 陶祖钰, 俞小鼎, 2017.强对流天气预报的一些基本问题[J].气象, 43(6):641-652.
[9]王秀明, 周小刚, 俞小鼎, 2013.雷暴大风环境特征及其对风暴结构影响的对比研究[J].气象学报, 71(5):839-852.
[10]王秀明, 俞小鼎, 周小刚, 2014.雷暴潜势预报中几个基本问题的讨论[J].气象, 40[4]:389-399.
[11]谢欣汝, 游庆龙, 保云涛, 等, 2018.基于多源数据的青藏高原夏季降水与水汽输送的联系[J].高原气象, 37(1):78-92. DOI:10.7522/j.issn.1000-0534.2017.00030.
[12]申红艳, 陈丽娟, 胡泊, 等, 2017.西北中部夏季降水主要空间型及环流特征[J].高原气象, 36(2):455-467. DOI:10.7522/j.issn.1000-0534.2016.00139.
[13]徐祥德, 陶诗言, 王继志, 等, 2002.青藏高原-季风水汽输送"大三角扇形"影响域特征与中国区域旱涝异常的关系[J].气象学报, 60(3):257-266.
[14]卓嘎, 徐祥德, 陈联寿, 2002.青藏高原夏季降水的水汽分布特征[J].气象科学, 22(1):1-8.
[15]王宝鉴, 黄玉霞, 何金海, 等, 2004.东亚夏季风期间水汽输送与西北干旱的关系[J].高原气象, 23(6):912-918.
[16]刘维成, 张强, 傅朝, 2017.近55年来中国西北地区降水变化特征及影响因素分析[J].高原气象, 36(6):1533-1545. DOI:10.7522/j.issn.1000-0534.2017.00081.
[17]韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分析[J].高原气象, 36(6):1477-1486. DOI:10.7522/j.issn.1000-0534.2016.00125.
[18]戴加洗, 1990.青藏高原气候[M].北京:气象出版社.
[19]苗秋菊, 徐祥德, 施小英, 2004.青藏高原周边区域性异常多雨中心的水汽输送结构[J].气象, 30(12):44-47.
[20]徐祥德, 周明煜, 陈家宜, 等, 2001.青藏高原地-气过程动力、热力结构综合物理图象[J].中国科学(地球科学), 31(5):428-440.
[21]孙继松, 戴建华, 何立富, 等, 2014.强对流天气预报的基本原理和技术方法[M].北京:气象出版社, 133-139.
[22]孔德兵, 2016.西北地区东部雷暴特征及24h预报研究[D].兰州: 兰州大学.
[23]赵庆云, 傅朝, 刘新伟, 等, 2017.西北东部暖区大暴雨中尺度系统演变特征[J].高原气象, 36(3):697-704. DOI:10.7522/j.issn.1000-0534.2016.00140.
[24]王江山, 李锡福, 2004.青海天气气候[M].北京:气象出版社, 99-282.
[25]张国庆, 刘蓓, 2006.青海省冰雹灾害分布特征[J].气象科技, 34(5):558-562.
[26]朱平, 李生辰, 王振会, 等, 2014.青藏高原东部暴雨云团局地强降水响应特征[J].遥感学报, 18(2):418-431. DOI:10.11834/jrs. 20143069.
[27]朱平, 张国庆, 2015.祁连山南麓湟水河谷地形云雷达回波特征[J].干旱区研究, 32(3):551-564. DOI:10.13866/j. azr. 2015.03.20.
[28]田成娟, 朱平, 马琼, 等, 2017.青藏高原东北部两次区域性大到暴雨对比分析[J].高原山地气象研究, 37(1):1-6.
Outlines

/