Objective Identifying and Activity Characteristics of Qinghai-Tibetan Plateau Vortex

  • GUAN Liang ,
  • LI Dongliang
Expand
  • Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD); Nanjing University of Information Science and Technology(NUIST), Nanjing 210044, Jiangsu, China

Received date: 2018-02-19

  Online published: 2019-02-28

Abstract

Qinghai-Tibetan Plateau Vortex is one of the most important weather system on the Qinghai-Tibetan Plateau. Its occurrence and movement have an important impact on weather and climate of the plateau and East Asia. In this study, the activity characteristics of the vortex in 1979-2016 are investigated by Using CFSR high precision reanalysis data and the Qinghai-Tibetan Plateau Vortex almanac. 2008 is selected as the characteristic year. The Qinghai-Tibetan Plateau Vortex objective recognition standard which is based on the vortex artificial recognition standard is formulated and modified by analyzing vortex in 2008. The results show that, the statistics results of the study are similar to the almanac in 2008. The recognized location of the vortex in 2009 is closer to the almanac than the former scholars. In the last 38 years, the vortex has generated 71 per year on average, the amounts first decrease and increase later, but the overall trend shows an increase. The initial location is mainly distributed in the northwest of Plateau. The secondary initial location is in the south of himalaya.

Cite this article

GUAN Liang , LI Dongliang . Objective Identifying and Activity Characteristics of Qinghai-Tibetan Plateau Vortex[J]. Plateau Meteorology, 2019 , 38(1) : 55 -65 . DOI: 10.7522/j.issn.1000-0534.2018.00067

References

[1]Dell'Osso L, Chen S J, 1986. Numerical experiments on the genesis of vortices over the Qinghai-Tibet plateau[J]. Tellus Series A-dynamic Meteorology & Oceanography, 38 (3):236-250.
[2]Kuo Y H, Cheng L, Anthes R A, 2009. Mesoscale Analyses of the Sichuan Flood Catastrophe, 11 15 July 1981[J]. Monthly Weather Review, 114(11):1984.
[3]郁淑华, 高文良, 彭骏, 2012, 青藏高原低涡活动对降水影响的统计分析[J].高原气象, 31(3):592-604.
[4]陈乾, 1964.青藏高原地区500 hPa低涡的天气气候分析[C]//兰州: 兰州天动会议技术材料, 127-129.
[5]程译萱, 范广洲, 张永莉, 等, 2018.青藏高原及周边地区垂直温度梯度特征及其成因分析[J].高原气象, 37(2):333-348. DOI:10.7522/j.issn.1000-0534.2017.00057.
[6]解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象, 37(1):28-42. DOI:10.7522/j.issn.1000-0534.2017.00019.
[7]李栋梁, 魏丽, 李维京, 等, 2003.青藏高原地面感热对北半球大气环流和中国气候异常的影响[J].气候与环境研究, 8(1):60-70.
[8]李国平, 赵邦杰, 杨锦青, 2002.地面感热对青藏高原低涡流场结构及发展的作用[J].大气科学, 26(4):519-525.
[9]李国平, 卢会国, 黄楚惠, 等, 2016.青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响[J].大气科学, 40 (1):131-141.
[10]李国平, 赵福虎, 黄楚惠, 等, 2014基于NCEP资料的近30年夏季青藏高原低涡的气候特征[J].大气科学, 38(4):756-769.
[11]林志强, 周振波, 假拉, 2013.高原低涡客观识别方法及其初步应用[J].高原气象, 32(6):1580-1588. DOI:10.7522/j.issn.1000-0534.2012.00153.
[12]李跃清, 郁淑华, 彭骏, 等, 2010.青藏高原低涡切变线年鉴2008[M].北京:科学出版社.
[13]彭广, 李跃清, 郁淑华, 等, 2011.青藏高原低涡切变线年鉴2009[M].北京:科学出版社.
[14]青藏高原气象科学研究拉萨会战组, 1981.夏半年青藏高原500毫巴低涡切变线的研究[M].北京:科学出版社, 1-122.
[15]王金虎, 李栋梁, 王颖, 2015.西南低涡活动特征的再分析[J].气象科学, 35(2):133-139.
[16]王鑫, 李跃清, 郁淑华, 等, 2009.青藏高原低涡活动的统计研究[J].高原气象, 28(1):64-71.
[17]吴永森, 1964.高原夏季500 hPa低涡的初步研究[C]//青海省气象论文集(2).西宁: 青海人民出版社, 18-19.
[18]叶笃正, 高由禧, 1979.青藏高原气象学[M].北京:科学出版社, 122-126.
[19]张博, 李国平, 2017.基于CFSR资料的高原低涡客观识别技术及其应用[J].兰州大学学报(自然科学版), 53 (1):106-111.
[20]张顺利, 陶诗言, 张庆云, 等, 2001.1998年夏季中国暴雨洪涝灾害的气象水文特征[J].应用气象学报, 12(4):442-457.
[21]张长灿, 李栋梁, 王慧, 等, 2017.青藏高原春季地表感热特征及其对中国东部夏季雨型的影响[J].高原气象, 36(1):13-23. DOI:10.7522/j.issn.1000-0534.2016.00028.
[22]章基嘉, 朱抱真, 1988.青藏高原气象学进展[M].北京:科学出版社.
Outlines

/