The Primary Analysis of Wind Field's Influence on Qinghai-Tibetan Plateau Vortex Spinning over Hetao Region, China

  • TU Nini ,
  • YU Shuhua ,
  • GAO Wenliang
Expand
  • Institute of Plateau Meteorology, China Meteorological Administration, Chengdu 610072, Sihcuan, China;Heavy rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu 610072, Sichuan, China;Ya'an Meteorological Bureau, Ya'an 625000, Sichuan, China

Received date: 2017-08-18

  Online published: 2019-02-28

Abstract

By using the July and August NCEP/NCAR reanalysis data in 2000, 2002 and 2005, the vorticity budget and middle level wind field of three spinning over Hetao region Plateau Vortexes, with consistent northward moving tropical low vortex, in different active phases were analyzed. Results show that the tropical low vortex's actions will influence the sustained departure Plateau vortexes (SDPVs) environmental fields, which will change the structure of the wind field of the SDPVs and lead to form dissymmetrical wind field structures. The dynamic mechanism of positive vorticity maintenance and development accompanying with spinning SDPVs depend mainly on the contribution of the generating and developing terms of the total positive vorticity changing rate. The contribution mechanism of the vortex to the total positive vorticity changing rate in vortex area of the SDPV is different under low trough, horizontal, and longitudinal shear wind field. The dynamic mechanism of vortex development and maintainence in low trough or transverse shear wind field has close relationship with the convergence stream field's maintainence and development contribution to the positive vorticity changing rate. And the dynamic mechanism of vortex development and maintainence in longitudinal shear wind field has close relationship with the horizental absolute vorticity advection term's contribution to the positive vorticity changing rate, which caused by the south and north wind flow to the vortex east and west region respectively. In the weaker weather system of the shear wind field, The SDPVs tend to move to the center of the total positive vorticity changing rate area.

Cite this article

TU Nini , YU Shuhua , GAO Wenliang . The Primary Analysis of Wind Field's Influence on Qinghai-Tibetan Plateau Vortex Spinning over Hetao Region, China[J]. Plateau Meteorology, 2019 , 38(1) : 66 -77 . DOI: 10.7522/j.issn.1000-0534.2017.00096

References

[1]Chang C P, Yi L, 2000.A numerical simulation of vortex development during the 1992 east Asian summer monsoon onset using the Navy's regional model[J]. Mon Wea Rev, 128:1604-1631.
[2]Xiang S Y, Li Y Q, Li D, et al, 2013. An analysis of heavy precipitation caused by a retracing plateau vortex based on TRMM data[J]. Meteor Atmos Phys, 122(1-2):33-45, DOI:10.1007/s00703-013-0269-1.
[3]董元昌, 李国平, 2015.大气能量学揭示的高原低涡个例结构及降水特征[J].大气科学, 39(6):1136-1148.
[4]高文良, 郁淑华, 2018.高原涡诱发西南涡伴行个例的环境场与成因分析[J].高原气象, 37(1):54-67. DOI:10.7522/j.issn.1000-0534.2017.00020.
[5]何光碧, 高文良, 屠妮妮, 2009a. 2000-2007年夏季青藏高原低涡切变线的观测事实分析[J].高原气象, 28(3):549-555.
[6]何光碧, 高文良, 屠妮妮, 2009b.两次高原低涡东移特征及发展机制动力诊断[J].气象学报, 67(4):599-612.
[7]何光碧, 曾波, 郁淑华, 等, 2016.青藏高原周边地区持续性暴雨特征分析[J].高原气象, 35(4):865-874. DOI:10.7522/j.issn.1000-0534.2015.00081.
[8]孔祥伟, 陶建红, 刘治国, 等, 2015.河西走廊中西部干旱区极端暴雨个例分析[J].高原气象, 34(1):70-81. DOI:10.7522/j.issn.1000-0534.2013.00138.
[9]李国平, 赵福虎, 黄楚惠, 等, 2014.基于NCEP资料的近30年夏季青藏高原低涡的气候特征[J].大气科学, 38(4):756-769.
[10]李国平, 卢会国, 黄楚惠, 等, 2016.青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响[J].大气科学, 40(1):131-141.
[11]李山山, 李国平, 2017.一次鞍型场环流背景下高原东部切变线降水的湿<i>Q</i>矢量诊断分析[J].高原气象, 36(2):317-329. DOI:10.7522/j.issn.1000-0534.2016.00025.
[12]林志强, 2016.南支槽对西南高原地区冬半年日降水的影响[J].高原气象, 35(6):1464-1475. DOI:10.7522/j.issn.1000-0534.2015.00091.
[13]刘新超, 陈永仁, 2014.两次高原涡与西南涡作用下的暴雨过程对比分析[J].高原山地气象研究, 34(1):1-7.
[14]刘云丰, 李国平, 2016.夏季高原大气热源的气候特征以及与高原低涡生成的关系[J].大气科学, 40(4):864-876.
[15]邱静雅, 李国平, 郝丽萍, 2015.高原涡与西南涡相互作用引发四川暴雨的位涡诊断[J].高原气象, 34(6):1556-1565. DOI:10.7522/j.issn.1000-0534.2014.00117.
[16]孙国武, 陈葆德, 吴继成, 等, 1987.大尺度环境场对青藏高原低涡发展东移的动力作用[J].高原气象, 6(3):225-233.
[17]唐信英, 周长艳, 王鸽, 2014.青藏高原低涡活动特征统计分析[J].高原山地气象研究, 34(3):41-44.
[18]青藏高原气象科学研究拉萨会战组, 1981.夏半年青藏高原500毫巴低涡切变线的研究[M].北京:科学出版社, 122.
[19]田珊儒, 段安民, 王子谦, 等, 2015.地面加热与高原低涡和对流系统相互作用的一次个例研究[J].大气科学, 39(1):125-136.
[20]宇婧婧, 刘屹岷, 吴国雄, 2011.冬季青藏高原大气热状况分析Ⅰ:气候平均[J].气象学报, 69(1):79-88.
[21]郁淑华, 高文良, 2018.一类青藏高原低涡异常路径的环境场分析[J].高原气象, 37(3):686-701. DOI:10.7522/j.issn.1000-0534.2017.00039.
[22]郁淑华, 高文良, 顾清源, 2007a.近年来影响我国东部洪涝的高原东移涡环流场特征分析[J].高原气象, 26(3):466-475.
[23]郁淑华、肖玉华、高文良, 2007b.冷空气对高原低涡移出高原影响的研究[J].应用气象学报, 18(6):737-747.
[24]郁淑华, 高文良, 肖玉华, 2008.冷空气对两例高原低涡移出高原影响的分析[J].高原气象, 27(1):96-103.
[25]郁淑华, 高文良, 彭骏, 2012.青藏高原低涡活动对降水影响的统计分析[J].高原气象, 31(3):592-604.
[26]王学佳, 杨梅学, 万国宁, 2013.近60年青藏高原地区地面感热通量的时空演变特征[J].高原气象, 32(6):1557-1667. DOI:10.7522/j.issn.1000-0534.2012.00151.
[27]吴迪, 王澄海, 何光碧, 2016.青藏高原地区夏季两次强降水过程中重力波特征分析[J].高原气象, 35(4):854-864. DOI:10.7522/j.issn.1000-0534.2015.00066.
[28]肖递祥, 郁淑华, 屠妮妮, 2016.高原低涡移出高原后持续活动的典型个例分析[J].高原气象, 35(1):43-54. DOI:10.7552/j.issn.1000-0534.2015.00002
[29]许威杰, 张耀存, 2017.凝结潜热加热与对流反馈对一次高原低涡过程影响的数值模拟[J].高原气象, 36(3):763-775. DOI:10.7522/j.issn.1000-0534-2016.00061.
Outlines

/