Greater attention has been received about the variation and trends in extreme climate events. Based on daily precipitation data recorded at 45 meteorological stations in the upper Yellow River Basin from 1970 to 2017, the upper Yellow River Basin was distributed into three regions according to topography, elevation, climate and other factors. For each region, wavelet analysis and Mann-Kendall abrupt change analysis were employed to analyze the spatial distribution and temporal trends of annual precipitation and extreme precipitation events. The results show that the distribution of average annual precipitation in the upper Yellow River Basin has obvious regional differences from the southeast to the northwest. The average annual precipitation and extreme precipitation in the upper Yellow River Basin had obvious periodic oscillation characteristics with 22a mostly, followed by 18a and 8a. For the whole region, the extreme precipitation and average annual precipitation were more consistent, but the precipitation in the upper of the Yellow River Basin has been increasing in recent years, while the frequency of extreme precipitation events has been decreasing. It is implicated that the spatial pattern of climate in China has been changed during the past 48 years.
MA Jianing
,
GAO Yanhong
. Analysis of Annual Precipitation and Extreme Precipitation Change in the Upper Yellow River Basin in Recent 50 Years[J]. Plateau Meteorology, 2019
, 38(1)
: 124
-135
.
DOI: 10.7522/j.issn.1000-0534.2018.00126
[1]Bonsal B R, Zhang X, Vincent L A, et al, 2001. Characteristics of daily and extreme temperatures over Canada[J]. Journal of Climate, 14(9):1959-1976.
[2]Field C B, 2012. Managing the risks of extreme events and disasters to advance climate change adaptation:special report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press.
[3]IPCC, 2013. Climate change 2013: the physical science basis. Summary for policymakers[M/OL]//IPCC. Cambridge: Cambridge University Press.
[4]Wang H J, Chen Y N, Chen Z S, 2013. Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of China, during 1960-2010[J]. Hydrological Processes, 27:1807-1818.
[5]Xiao C, Wu P, Zhang L, et al, 2016. Robust increase in extreme summer rainfall intensity during the past four decades observed in China[J]. Scientific reports, 6:38506.
[6]常军, 王永光, 赵宇, 等, 2014.近50年黄河流域降水量及雨日的气候变化特征[J].高原气象, 33(1):43-54. DOI:10.7522/j. issn. 1000-0534.2012.00177.
[7]陈磊, 王义民, 畅建霞, 等, 2016.黄河流域季节降水变化特征分析[J].人民黄河, 38(9):8-12. DOI:10.3969/j. issn. 1000-1379.2016.09.003.
[8]陈文海, 柳艳香, 马柱国, 2002.中国1951-1997年气候变化趋势的季节特征[J].高原气象, 21(3):251-257.
[9]曹瑜, 游庆龙, 马茜蓉, 等, 2017.青藏高原夏季极端降水概率分布特征[J].高原气象, 36(5):1176-1187. DOI:10.7522/j. issn. 1000-0534.2016.00131.
[10]贺振, 贺俊平, 2014.1960年至2012年黄河流域极端降水时空变化[J].资源科学, 36(3):490-501.
[11]刘昌明, 郑红星, 2003.黄河流域水循环要素变化趋势分析[J].自然资源学报, 18(2):129-135.
[12]李二辉, 穆兴民, 赵广举, 2014.1919-2010年黄河上中游区径流量变化分析[J].水科学进展, 25(2):155-163. DOI:10.14042/j. cnki. 32.1309.2014.02.004.
[13]龙妍妍, 范广洲, 李飞, 等, 2018.高原夏季风对中国夏季极端降水的影响研究[J].高原气象, 37(1):1-12. DOI:10.7522/j. issn. 1000-0534.2017.00010.
[14]蓝永超, 鲁承阳, 喇承芳, 等, 2013.黄河源区气候向暖湿转变的观测事实及其水文响应[J].冰川冻土, 35(4):920-928. DOI:10.7522/j. issn. 1000-0240.2013.0104.
[15]买苗, 曾燕, 邱新法, 2006.黄河流域近40年日照百分率的气候变化特征[J].气象, 32(5):63-66.
[16]邱新法, 刘昌明, 曾燕, 2003.黄河流域近40年蒸发皿蒸发量的气候变化特征[J].自然资源学报, 18(4):437-442.
[17]寿绍文, 励申申, 王善华, 2006.天气学分析[M].北京:气象出版社.
[18]魏凤英, 2007.现代气候统计诊断与预测技术[M].北京:气象出版社.
[19]解承莹, 李敏姣, 张雪芹, 等, 2015.青藏高原南缘关键区夏季水汽输送特征及其与高原降水的关系[J].高原气象, 34(2):327-337. DOI:10.7522/j. issn. 1000-0534.2014.00034.
[20]许建伟, 2015.青藏高原动力降尺度评估和极端降水的高分辨率预估[D].北京: 中国科学院大学.
[21]杨志刚, 建军, 洪建昌, 2014.1961-2010年西藏极端降水事件时空分布特征[J].高原气象, 33(1):37-42. DOI:10.7522/j. issn. 1000-0534.2013.00147.
[22]祝青林, 张留柱, 于贵瑞, 等, 2005.近30年黄河流域降水量的时空演变特征[J].自然资源学报, 20(4):477-482.