Climatic Factors of Desertification Process in Alpine Meadow

  • ZHANG Yu ,
  • ZHANG Kecun ,
  • MENG Xianhong ,
  • AN Zhishan
Expand
  • Key Laboratory of Desert and Desertification, Northwest Institute of Ecological-Environmental and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-06-25

  Online published: 2019-02-28

Abstract

Based on indexes of NDVI and meteorological data in alpine meadow, the main climatic driving factors and mechanism of desertification in alpine meadow were studied. Results indicated as follows:(1) the value of NDVI presents a trend of increasing and then decreasing during 2000-2016, northern and middle of study area is first to decrease and gradually expended to northwest of Sichuan. (2) The air temperature is sustained warming since 1990s, and the upward trend is obvious after 2000.The general tendency of precipitation is decrease and chiefly concentrated in summer with no significant change, sunshine duration showed a downward trend. Annual average wind velocity showed an upward trend since 2000.(3) Air temperature and precipitation are the crucially influencing factors of NDVI, along with time-lapse, the explanatory power of sunshine duration and wind velocity are gradually increased. The interactive q values between two factors are higher than any q value of separated factors, and most of the interactive results belongs to bivariate enhancement or nonlinear enhancement, the interactive effect between each factor has great influence on the desertification process. (4) The gale and sandstorm occurred frequently in Zoige and Maqu, resultant sand transporting direction (RDD) was SSE with low wind energy environment and medium wind direction variability in Maqu during 2014-2016, the proportion of DP at high wind velocity level has increased, and the intensity of sand activity is enhanced from northwest to southeast. Consequently, rising temperature and decreasing precipitation are the dominant factors for meadow desertification, the growth of vegetation is affected by sunshine duration, and the desertification rate and spreading direction are determined by sand activity.

Cite this article

ZHANG Yu , ZHANG Kecun , MENG Xianhong , AN Zhishan . Climatic Factors of Desertification Process in Alpine Meadow[J]. Plateau Meteorology, 2019 , 38(1) : 187 -195 . DOI: 10.7522/j.issn.1000-0534.2018.00111

References

[1]Fryberger S G, 1979. Dune forms and wind regime[M]//Mckee E D. A Study of Global Sand Seas. US Geological Survey Professional Paper, 137-169.
[2]Klein J A, Harte J, Zhao X Q, 2004. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the TibetanPlateau[J]. Ecology Letters, 7(12):1170-1179.
[3]Oreskes N, 2004. The scientific consensus on climate change[J]. Science, 306:1689.
[4]Piao S L, Wang X H, Ciais P, et al, 2011. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006[J]. Global Change Biology, 17(10):3228-3239.
[5]Qin D, Plattner G K, Tignor M, et al, 2014. Climate change 2013:The physical science basis[M]. Cambridge, UK, and New York, USA:Cambridge University Press.
[6]Wang J F, Li X H, Christakos G, et al, 2010.Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of theHeshun Region, China[J]. International Journal of Geographical Information Science 24, 107-127.
[7]Wang S P, Duan J C, Xu G P, et al, 2012. Effects of warming and grazing on soil N availability, species composition and ANPP in alpine meadow[J]. Ecology, 93(11):2365-2376.
[8]Xu X K, Chen H, Levy J K, 2008. Spatiotemporal vegetation cover variations in the Qinghai-Tibet plateau under global climate change[J]. Chinese Science Bulletin, 53:915-922.
[9]Yang M, Wang S, Yao T, et al, 2014. Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) Plateau[J]. Cold Regions Science and Technology, 39(1):47-53.
[10]白军红, 欧阳华, 崔保山, 等, 2008.近40年来若尔盖高原高寒湿地景观格局变化[J].生态学报, 28(5):2245-2252.
[11]陈文业, 张瑾, 戚登臣, 等, 2013.黄河首曲-玛曲县高寒草甸沙化动态演变趋势及其驱动因子定量分析[J].草业学报, 22(2):11-21.
[12]丁国栋, 2010.风沙物理学[M].北京:中国林业出版社, 230-232.
[13]董治宝, 胡光印, 颜长珍, 等, 2012.江河源区沙漠化[M].北京:科学出版社, 136-138, 250.
[14]杜际增, 王根绪, 李元寿, 2015.近45年长江黄河源区高寒草地退化特征及成因分析[J].草业学报, 24(6):5-15.
[15]康悦, 李振朝, 田辉, 等, 2011.黄河源区植被变化趋势及其对气候变化的响应过程研究[J].气候与环境研究, 16(4):505-512.
[16]李红梅, 马玉寿, 王彦龙, 2010.气候变暖对青海高原地区植物物候期的影响[J].应用气象学报, 21(4):500-505.
[17]李晓英, 姚正毅, 王宏韦, 等, 2015.若尔盖盆地沙漠化驱动机制[J].中国沙漠, 35(1):51-59.
[18]李英年, 薛晓娟, 王建雷, 等, 2010.典型高寒植物生长繁殖特征对模拟气候变化的短期响应[J].生态学杂志, 29(4):624-629.
[19]梁四海, 陈江, 金晓媚, 等, 2007.近21年青藏高原植被覆盖变化规律[J].地球科学进展, 22(1):33-40.
[20]梁玉祥, 易美桂, 楚可要, 等, 2007.若尔盖地区湿地萎缩、草地退化沙化与北方沙尘干旱地区因果关系探索[J].自然杂志, 29(4):233-238.
[21]刘正佳, 邵全琴, 王丝丝, 2015.21世纪以来青藏高寒草地的变化特征及其对气候的响应[J].干旱区地理, 38(2):275-282.
[22]钱拴, 伏洋, Pan F F, 2010.三江源地区生长季气候变化趋势及草地植被响应[J].中国科学(地球科学), 40(10):1439-1445.
[23]宋春桥, 游松财, 柯灵红, 等, 2011.藏北高原植被物候时空动态变化的遥感检测研究[J].植物生态学报, 35(8):853-863.
[24]汪晓菲, 何平, 康文星, 2015.若尔盖县高原草地沙化成因分析[J].中南林业科技大学学报, 35(3):100-106.
[25]王辉, 2007.玛曲高寒草甸沙化特征及沙化驱动机制研究[D].兰州: 兰州大学, 5-74.
[26]王建兵, 王振国, 吕虹, 2008.黄河重要水源补给区草地退化的气候背景分析-以玛曲县为例[J].草业科学, 25(4):23-27.
[27]王健林, 钟志明, 王忠红, 等, 2014.青藏高原高寒草原生态系统土壤碳氮比的分布特征[J].生态学报, 34(22):6678-6691.
[28]王文丽, 董治宝, 胡光印, 等, 2008.若尔盖高原近30年沙地变化趋势分析[J].中国沙漠, 28(4):617-621.
[29]王长顺, 孟凡栋, 李新娥, 等, 2013.青藏高原草地生态系统对气候变化的响应[J].生态学杂志, 32(6):1587-1595.
[30]魏凤英, 1999.现代气候统计诊断预测技术[M].北京:气象出版社, 63-66.
[31]魏占雄, 郭连云, 谢卫东, 2011.三江源区高寒草地牧草生长季气候变化特征及其对牧草生育期长度的影响[J].水土保持研究, 18(4):170-178.
[32]魏振海, 董治宝, 胡光印, 等, 2009.若尔盖盆地沙丘形成分布影响因素探讨[J].中国沙漠, 29(6):1035-1042.
[33]谢欣汝, 游庆龙, 林厚博, 2018.近10年青藏高原中东部地表相对湿度减少成因分析[J].高原气象, 37(3):642-650.DOI:10.7522/j. issn. 1000-0534.2017.00091.
[34]徐刚, 赵志中, 王燕, 等, 2007.川北若尔盖高原盆地沙漠化、岩漠化遥感动态监测研究[J].地质通报, 26(8):1048-1055.
[35]徐振锋, 胡廷兴, 李小艳, 等, 2009.川西亚高山采伐迹地草坡群落对模拟增温的短期响应[J].生态学报, 29(6):2899-2905.
[36]薛娴, 郭坚, 张芳, 等, 2007.高寒草甸地区沙漠化发展过程及成因分析-以黄河源区玛多县为例[J].中国沙漠, 27(5):725-732.
[37]严晓瑜, 2008.不同时间尺度若尔盖湿地植被变化及其与气候的关系[D].北京: 中国气象科学研究院, 1-93.
[38]雍国伟, 石承苍, 岳鹏飞, 2003.川西北高原若尔盖草地沙化及湿地萎缩动态遥感监测[J].山地学报, 21(6):758-762.
[39]游宇驰, 李志威, 黄吵, 等, 2017.1990-2016年若尔盖高原荒漠化时空变化分析[J].生态环境学报, 26(10):1671-1680.
[40]张戈丽, 欧阳华, 张宪洲, 等, 2010.基于生态地理分区的青藏高原植被覆被变化及其对气候变化的响应[J].地理研究, 29(11):2004-2016.
[41]郑然, 李栋梁, 蒋元春, 等, 2015.全球变暖背景下青藏高原气温变化的新特征[J].高原气象, 34(6):1531-1539. DOI:10.7522/j. issn. 1000-0534.2014.00123.
[42]周娟, 文军, 王欣, 等, 2017.青藏高原季风演变及其与土壤湿度的相关分析[J].高原气象, 36(1):45-56. DOI:10.7522/j. issn. 1000-0534.2016.00003.
[43]于惠, 2013.青藏高原草地变化及其对气候的响应[D].兰州: 兰州大学, 1-102.
Outlines

/