Simulation on Afternoon Convective Precipitation Triggered by Soil Moisture over the Qinghai-Tibetan Plateau

  • LUAN Lan ,
  • MENG Xianhong ,
  • Lü Shihua ,
  • HAN Bo ,
  • LI Zhaoguo ,
  • ZHAO Lin ,
  • LI Ruiqing
Expand
  • Key Laboratory for Land Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;University of Chinese Academy of Sciences, Beijing 100049, China;College of Amospheric Sciences, Chendu University of Informtion Technology Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu 610225, Sichuan, China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;Inner Mongolia Meteorological Observatory, Hohhot, 010020, Inner Mongolia, China

Received date: 2017-09-16

  Online published: 2018-08-28

Abstract

This study designed sensitive experiments using WRF model and used CTP-HIlow framework to investigate the influences of soil moisture change on triggering and inhibiting the afternoon convective precipitation over the Qinghai-Tibetan Plateau. The results show that WRF model can reproduce the spatial distribution of the precipitation over the Qinghai-Tibetan Plateau. In addition, there are some improvements of the precipitation simulation over the west part of the Qinghai-Tibetan Plateau when soil moisture decreases. In general, the statement of large scale atmospheric circulation dominates the occurrence of the afternoon convective precipitation process, especially in the middle, southwestern and northeastern part of the Qinghai-Tibetan Plateau. The large scale atmospheric circulation caused the triggering and inhibiting afternoon convective precipitation events account for about 60%~90% of the total number of the triggered and inhibited precipitation events. According to the results of the simulation, when soil moisture decreases, there are more positive feedback cases than negative feedback cases between soil moisture and afternoon convective precipitation which means the decreasing of the soil moisture inhibits the occurrence of afternoon convective precipitation in most cases. However, relative smaller proportion of the cases is the decreasing soil moisture that triggers the afternoon convective precipitation which is the negative feedback. The amount of convective precipitation triggered by the negative feedback process accounts for larger proportion in the northwest part which is the arid part of the Qinghai-Tibetan Plateau. It has the center value up to 80% or more. The mechanism of negative feedback is that the decreasing soil moisture increases the surface sensible heat flux which influences the distribution of sensitive heat flux over the Qinghai-Tibetan Plateau. The increased sensible heat flux contributes to the development of the boundary layer which makes the air parcel easier to reach the level of free convection and the occurrence of afternoon convective precipitation. By comparing the values of CTP and HIlow between control and sensitive experiments in different years, to some extent, there are differences between these two years. It means that soil moisture can influence occurrence of afternoon convective precipitation through its influences both on the surface energy and the atmosphere humidity.

Cite this article

LUAN Lan , MENG Xianhong , Lü Shihua , HAN Bo , LI Zhaoguo , ZHAO Lin , LI Ruiqing . Simulation on Afternoon Convective Precipitation Triggered by Soil Moisture over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018 , 37(4) : 873 -885 . DOI: 10.7522/j.issn.1000-0534.2018.00008

References

[1]Avissar R, Liu Y, 1996.3-dimensional numerical study of shallow convective clouds and precipitation induced by land-surface forcing[J]. J Geophys Res, 101(D3):7499-7518. DOI:10.1029/95JD03031.
[2]Chow K, Chan J C L, Shi X, et al, 2007. Time-lagged effects of spring Tibetan Plateau soil moisture on the monsoon over China in early summer[J]. Int J Climatol, 28(1):55-67. DOI:10.1002/joc.1511.
[3]Dee D P, Uppala S M, Simmons A J, et al, 2011. The ERA-Interim reanalysis:Configuration and performance of the data assimilation system[J]. Quart J Roy Meteor Soc, 137(656):553-597. DOI:10.1002/qj. 828.
[4]Ek M, Mahrt L, 1994. Daytime evolution of relative humidity at the boundary layer top[J]. Mon Wea Rev, 122(12):2709-2721. DOI:10.1175/1520-0493(1994)122<2709:DEORHA>2.0.CO;2.
[5]Ferguson C R, Wood E F, 2011. Observed land-atmosphere coupling from satellite remote sensing and reanalysis[J]. J Hydrometeor, 12(6):1221-1254. DOI:10.1175/2011JHM1380.1.
[6]Findell K L, Eltahir E A B, 2003. Atmospheric controls on soil moisture-boundary layer interactions. Part Ⅰ:Framework development[J]. J Hydrometeor, 4(3):552-569. DOI:10.1029/2001JD001515.
[7]Giorgi F, Mearns L O, Shields C, et al, 1996. A regional model study of the importance of local versus remote controls of the 1988 drought and the 1993 flood over the central United States[J]. J Climate, 9:1150-1162. DOI:<a href="http://dx.doi.org/1520-0442(1996)009&#60;1150:ARMSOT&#62;2.0.CO;2" target=_blank>1520-0442(1996)009&#60;1150:ARMSOT&#62;2.0.CO;2</a>.
[8]Liu Y Y, Dorigo W A, De Jeu R A M, et al, 2012. Trend-preserving blending of passive and active microwave soil moisture retrievals[J]. Remote Sens Environ, 123:280-297. DOI:10.1016/j.rse. 2012.03.014.
[9]Liu Y Y, Parinussa R M, Dorigo W A, et al, 2011. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals[J]. Hydrology and Earth System Sciences, 15(2):425-436. DOI:10.5194/hess-15-425-2011.
[10]Meng X H, Li R Q, Luan L, et al, 2017. Detecting hydrological consistency and changes of soil moisture in summer over the Tibetan Plateau using the European Space Agency satellite soil moisture products[J]. Climate Dyn, 1-12. DOI:10.1007/s00382-017-3646-5.
[11]Meng X H, Lü S H, Gao Y H, et al, 2015. Simulated effects of soil moisture on oasis self-maintenance in a surrounding desert environment in Northwest China[J]. Int J Climatol, 35(14):4116-4125. DOI:10.1002/joc. 4271.
[12]Milly P C D, Dunne K A, 1994. Sensitivity of the global water cycle to the water-holding capacity of land[J]. J Climate, 7(4):506-526. DOI:10.1175/1520-0442(1994)007&lt;0506:SOTGWC&gt;2.0.CO;2.
[13]Paegle J, Mo K C, Nogues-Paegle J, 1996. Dependence of simulated precipitation on surface evaporation during the 1993 United States summer floods[J]. Mon Wea Rev, 124(3):345-361. DOI:10.1175/1520-0493(1996)124&lt;0345:DOSPOS&gt;2.0.CO;2.
[14]Seneviratne S I, Corti T, Davin E L, et al, 2010. Investigating soil moisture-climate interactions in a changing climate:A review[J]. Earth-Science Reviews, 99(3):125-161. DOI:10.1016/j.earscirev. 2010.02.004.
[15]Shukla J, Mintz Y, 1982. The influence of land-surface evapotranspiration on the earth's climate[J]. Science, 215(4539):1498-1501. DOI:10.1126/science. 215.4539.1498.
[16]Skamarock W C, Klemp J B, Dudhia J, et al, 2008. A description of the advanced research WRF version 3[R]. NCAR Technical Note NCAR/TN-475+STR, 113. DOI: <a href="http://dx.doi.org/10.5065/D68S4MVH" target="_blank">10.5065/D68S4MVH</a>.
[17]Tuinenburg O A, Hutjes R W A, Jacobs C M J, et al, 2011. Diagnosis of local land-atmosphere feedbacks in India[J]. J Climate, 24(1):251-266. DOI:10.1175/2010JCLI3779.1.
[18]Van der V R, Salama MS, Pellarin T, et al, 2014. Long term soil moisture mapping over the Tibetan Plateau using special sensor microwave/imager[J]. Hydrology and Earth System Science, 18(4):1323-1337. DOI:10.5194/hess-18-1323-2014.
[19]Wagner W, Dorigo W, De Jeu R, et al, 2012. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Science, 1-7:315-321. DOI:10.5194/isprsannals-I-7-315-2012.
[20]Yeh T C, Wetherald R T, Manabe S, 1984. The effect of soil moisture on the short-term climate and hydrology change-a numerical experiment[J]. Mon Wea Rev, 112(3):474-490. DOI:<a href="http://dx.doi.org/1520-0493(1984)112&#60;0474:TEOSMO&#62;2.0.CO;2" target=_blank>1520-0493(1984)112&#60;0474:TEOSMO&#62;2.0.CO;2</a>.
[21]Zaitchik B F, Macalady A K, Bonneau L R, et al, 2006. Europe's 2003 heat wave:A satellite view of impacts and land-atmosphere feedbacks[J]. Int J Climatol, 26(6):743-769. DOI:10.1002/joc. 1280.
[22]Dai Y J, Zeng Q C, 1996. Study on land surface process[J]. Advances in Water Science, 7(S1):40-53.<br/>戴永久, 曾庆存, 1996.陆面过程研究[J].水科学进展, 7(S1):40-53.
[23]Guo W D, Ma Z G, Wang H J, 2007. Soil moisture-an important factor of seasonal precipitation prediction and its application[J]. Climatic Environ Res, 12(1):20-28. DOI:10.14042/j.cnki. 32.1309.1996. s1.007.<br/>郭维栋, 马柱国, 王会军, 2007.土壤湿度-一个跨季度降水预测中的重要因子及其应用探讨[J].气候与环境研究, 12(1):20-28.
[24]Liang L N, Chen H S, 2010. Possible linkage between spring soil moisture anomalies over south China and summer rainfall in China[J]. Trans Atmos Sci, 33(5):536-546. DOI:10.3969/j.issn. 1674-7097.2010.05.004.<br/>梁乐宁, 陈海山, 2010.春季华南土壤湿度异常与中国夏季降水的可能联系[J].大气科学学报, 33(5):536-546.
[25]Luan L, Meng X H, Lü S H, et al, 2017. Impacts of microphysics and PBL physics parameterization on a convective precipitation over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 36(2):283-293. DOI:10.7522/j.issn. 1000-0534.2016.00086.<br/>栾澜, 孟宪红, 吕世华, 等, 2017.青藏高原一次对流降水模拟中边界层参数化和云微物理的影响研究[J].高原气象, 36(2):283-293.
[26]Ma Z G, Fu C B, Xie L, et al, 2001. Some problems in the study on the relationship between soil moisture and climatic change[J]. Advance in Earth Sciences, 20(4):563-568. DOI:10.3321/j.issn:1001-8166.2001.04.019.<br/>马柱国, 符淙斌, 谢力, 等, 2001.土壤湿度和气候变化关系研究中的某些问题[J].地球科学进展, 20(4):563-568.
[27]Ma Z G, Wei H L, Fu C B, 1999. Progress in the research on the relationship between soil moisture and climate change[J]. Adv Earth Sci, 14(3):88-94. DOI:10.3321/j.issn:1001-8166.1999.03.014.<br/>马柱国, 魏和林, 符淙斌, 1999.土壤湿度与气候变化关系的研究进展与展望[J].地球科学进展, 14(3):88-94.
[28]Ma Z G, Wei H L, Fu C B, 2000. Relationship between regional soil moisture variation and climatic variability over east China[J]. Acta Meteor Sinica, 58(3):278-287. DOI:10.3321/j.issn:0577-6619.2000.03.003.<br/>马柱国, 魏和林, 符淙斌, 2000.中国东部区域土壤湿度的变化及其与气候变率的关系[J].气象学报, 58(3):278-287.
[29]Wang W Q, 1991. Numerical experiments of the soil temperature and moisture anomalies' effects on the short term climate[J]. Chinese J Atmos Sci, 15(5):115-123. DOI:10.3878/j.issn. 1006-9895.1991.05.14.<br/>王万秋, 1991.土壤温湿异常对短期气候影响的数值模拟试验[J].大气科学, 15(5):115-123.
[30]Xu X D, Zhao T L, Lu C, et al, 2014. Characteristics of the water cycle in the atmosphere over the Tibetan Plateau[J]. Acta Meteor Sinica, 72(6):1079-1095. DOI:10.11676/qxxb2014.091.<br/>徐祥德, 赵天良, Lu C, 等, 2014.青藏高原大气水分循环特征[J].气象学报, 72(6):1079-1095.
[31]Yan Z H, Deng L T, 2007. Description of microphysical processes in WRF model and its prediction experiment[J]. Desert Oasis Meteor, 1(6):1-6. DOI:10.3969/j.issn. 1002-0799.2007.06.001.<br/>闫之辉, 邓莲堂, 2007. WRF模式中的微物理过程及其预报对比试验[J].沙漠与绿洲气象, 1(6):1-6.
[32]Zhang G C, 2004. Progress of Weather Research and Forecast (WRF) model and application in the United States[J]. Meteor Mon, 30(12):27-31. DOI:10.3969/j.issn. 1000-0526.2004.12.006.<br/>章国材, 2004.美国WRF模式的进展和应用前景[J].气象, 30(12):27-31.
[33]Zhang W, Wang L, Chen Q L, 2015. The soil moisture in Eastern of Qinghai-Tibet Plateau and its relationship with precipitation in China[J]. Journal of Chengdu University of Information Technology, 30(1):81-87. DOI:10.3969/j.issn. 1671-1742.2015.01.015.<br/>张雯, 王磊, 陈权亮, 2015.青藏高原东部土壤湿度变化及其与中国降水的关系[J].成都信息工程学院学报, 30(1):81-87.
[34]Zhou J, Wen J, Wang X, et al, 2017. Analysis of the Qinghai-Xizang Plateau monsoon evaluation and its correlation with soil moisture[J]. Plateau Meteor, 36(1):45-56. DOI:10.7522/j.issn. 1000-0534.2016.00003.<br/>周娟, 文军, 王欣, 等, 2017.青藏高原季风演变及其与土壤湿度的相关分析[J].高原气象, 36(1):45-56.
[35]Zhuo G, Deji Z M, Nima J, 2017. Distribution of soil moisture over the Qinghai-Tibetan Plateau and its effect on the precipitation in June and July over the mid-lower reaches of Yangtze River basin[J]. Plateau Meteor, 36(3):657-666. DOI:10.7522/j.issn. 1000-0534.2016.00073.<br/>卓嘎, 德吉卓玛, 尼玛吉, 2017.青藏高原土壤湿度分布特征及其对长江中下游6、7月降水的影响[J].高原气象, 36(3):657-666.
Outlines

/