Spatial-temporal Variability of the Snow Depth over the Qinghai-Tibetan Plateau and the Cause of Its Interannual Variation

  • BAO Yuntao ,
  • YOU Qinglong ,
  • XIE Xinru
Expand
  • Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD); Nanjing University of Information Science and Technology(NUIST), Nanjing 210044, Jiangsu, China

Received date: 2017-06-20

  Online published: 2018-08-28

Abstract

Based on daily snow depth observation data from National Meteorological Information Center and atmospheric circulation data from JRA55 reanalysis, the spatial-temporal variability of snow depth over the middle east area of Qinghai-Tibetan Plateau (QTP) in early winter (November to subsequent January) and late winter (February to April) during 1961-2013 was analyzed. The circulation patterns and water vapor conditions affecting the snow depth anomalies and its interannual variations over the QTP were analyzed. The results show that, interannual and interdecadal variations of snow depth over the QTP is significant. Spatial distribution of snow depth is uneven, the interannual variability of snow depth increases with the increases of altitude. Changes of the snow depth are consistent with the region in early and late winter. Trend of snow depth are not obvious in both early and late winter during 1961-2013. Snow depth increases significantly before 1996 and decreases insignificantly after 1996. The interannual variability of snow depth in early winter is likely to be dominated by interannual variations of both Arctic Oscillation (AO) and geopotential height near the QTP. In late winter, the interannual variability of snow depth is likely to be dominated by the geopotential height near the QTP and adjusted by interannual variations of AO. When snow depth over QTP is significantly positive, geopotential height anomaly from Arabian Sea to eastern QTP is negative, causing the animation of southern branch trough, westerly jet to the southern side of the plateau strengthens, increasing the water vapor flux in front of the trough. Meanwhile, the subtropical high moves northward and becomes strong, increasing the water vapor flux in its peripheral areas. Strengthening of the Lake Baikal ridge leads cold air southward and meet with warm and humid air from low-latitudes in the eastern plateau, which is conducive to more snowfall and more snow depth over the QTP.

Cite this article

BAO Yuntao , YOU Qinglong , XIE Xinru . Spatial-temporal Variability of the Snow Depth over the Qinghai-Tibetan Plateau and the Cause of Its Interannual Variation[J]. Plateau Meteorology, 2018 , 37(4) : 899 -910 . DOI: 10.7522/j.issn.1000-0534.2017.00099

References

[1]Pepin N, Bradley R S, Diaz H F, et al, 2015. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 5(5):424-430. DOI:10.1038/nclimate2563.
[2]Lü J M, Ju J H, Kim S J, et al, 2008. Arctic Oscillation and the autumn/winter snow depth over the Tibetan Plateau[J]. J Geophys Res:Atmospheres, 113(D14):762-770. DOI:10.1029/2007JD009567.
[3]Kendall M G, 1975. Rank correlation methods[M]. London:Griffin.
[4]Knkla G J, Angell J K, Korshover J, et al, 1997:New data on climate trends[J]. Nature, 270, 573-580.
[5]Kobayashi S, Ota Y, Harada Y, et al, 2015. The JRA-55 reanalysis:General specifications and basic characteristics[J]. J Meteor Soc Japan, 93, 5-48. DOI:10.2151/jmsj. 2015-001.
[6]Mann H B, 1945. Nonparametric tests against trend[J]. Econometrica, 13(3):245-259. DOI:10.2307/1907187.
[7]Qiu J, 2008. The third pole[J]. Nature, 454(7203):393-396. DOI:10.1038/454393a.
[8]Reiter E R, Gao D Y, 1982. Heating of the Tibet Plateau and movements of the South Asian High during spring[J]. Mon Wea Rev, 110(11):1694-1711. DOI:10.1175/1520-0493(1982)110<1694:HOTTPA>2.0.CO;2.
[9]Thompson D W J, Wallace J M, 1998. The Arctic oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophys Res Lett, 25(9):1297-1300. DOI:10.1029/98GL00950.
[10]Wu B Y, Wang J, 2002. Winter arctic oscillation, Siberian High and East Asian winter monsoon[J]. Geophys Res Lett, 29 (19):3-1-3-4. DOI:10.1029/2002GL015373.
[11]Yasunari T, Kanehira A, Koike T, 2000. Interannual variability of snowcover over the Tibetan Plateau and its impact on Asian summer monsoon[C]. Proceedings of International Conference & Young Scientist Workshop on Asian Monsoon Environmental System and Global Change, November 15-17, Nanjing, China, 118.
[12]You Q L, Kang S C, Ren G Y, et al, 2011. Observed changes in snow depth and number of snow days in the eastern and central Tibetan Plateau[J]. Climate Res, 46(2):171-183. DOI:10.3354/cr00985.
[13]Yuan C, Tozuka T, Miyasaka T, et al, 2009. Respective influences of IOD and ENSO on the Tibetan snow cover in early winter[J]. Climate Dyn, 33(4):509-520. DOI:10.1007/s00382-008-0495-2.
[14]Zhang Y, Li T, Wang B, 2004. Decadal change of the spring snow depth over the Tibetan Plateau:The associated circulation and influence on the East Asian Summer Monsoon[J]. J Climate, 17:2780-2793. DOI:10.1175/1520-0442(2004)017<2780:DCOTSS>2.0.CO;2.
[15]Chen Q J, Gao B, Zhang Q, 2000. Studies on relation of snow cover over the Tibetan Plateauin winter to the winter-summer monsoon change[J]. Chinese J Atmos Sci, 24(4):477-492. DOI:10.3878/j.issn. 1006-9895.2000.04.05.<br/>陈乾金, 高波, 张强, 2000.青藏高原冬季雪盖异常与冬季风变异及其相互联系的物理诊断研究[J].大气科学, 24 (4):477-491.
[16]Dong M, Yu J R, 1997. A simulation study for the influences of Tibetan Plateau spring snow cover on the general circulation[J]. J Appl Meteor Sci, 8(Suppl):100-109.<br/>董敏, 余建锐, 1997.青藏高原春季积雪对大气环流影响的模拟研究[J].应用气象学报, 8(增刊):100-109.
[17]Duan A M, Xiao Z X, Wu G X, et al, 2014. Study progress of the influence of the Tibetan Plateau winter and spring snow depth on Asian Summer Monsoon[J]. Meteor Environ Sci, 37(3):94-101. DOI:10.3969/j.issn. 1673-7148.2014.03.015.<br/>段安民, 肖志祥, 吴国雄, 等, 2014.青藏高原冬春积雪影响亚洲夏季风的研究进展[J].气象与环境科学, 37(3):94-101.
[18]Fan S R, Fan G Z, Dong Y P, et al, 2011. Discussion on the methods of four seasons division in Tibetan Plateau[J]. Plateau Mountain Meteor Res, 31(2):1-11. DOI:10.3969/j.issn. 1674-2184.2011.02.001.<br/>范思睿, 范广洲, 董一平, 等, 2011.青藏高原四季划分方法探讨[J].高原山地气象研究, 31(2):1-11.
[19]Feng S, Tang M C, Wang D M, 1998. New evidence of Tibetan Plateau is China's climate change promoter region[J]. Chinese Sci Bull, 43(6):633-636. DOI:10.1007/s00376-999-0032-1.<br/>冯松, 汤懋苍, 王冬梅, 1998.青藏高原是我国气候变化启动区的新证据[J].科学通报, 43(6):633-636.
[20]Gao R, Wei Z G, Dong W J, et al, 2003. Variation of the snow and frozen soil over Qinghai-Xizang Plateau in the late twentieth century and their relations to climatic change[J]. Plateau Meteor, 22(2):191-196.<br/>高荣, 韦志刚, 董文杰, 等, 2003.20世纪后期青藏高原积雪和冻土变化及其与气候变化的关系[J].高原气象, 22(2):191-196.
[21]Gong D Y, Wang S W, 2003. Influence of Arctic Oscillation on winter climate over China[J]. Acta Geograp Sinica, 58(4):559-568. DOI:10.3321/j.issn:0375-5444.2003.04.010.<br/>龚道溢, 王绍武, 2003.近百年北极涛动对中国冬季气候的影响[J].地理学报, 58 (4):559-568.
[22]Guo J P, Liu H, An L C, et al, 2016. Study on variation of snow cover and its orographic impact over Qinghai-Xizang Plateau during 2001-2012[J]. Plateau Meteor, 35(1):24-33. DOI:10.7522/j.issn. 1000-0534.2014.00140.<br/>郭建平, 刘欢, 安林昌, 等, 2016.2001-2012年青藏高原积雪覆盖率变化及地形影响[J].高原气象, 35(1):24-33.
[23]Ke C Q, Li P J, 1998. Research on the characteristics of distribution and variation of snow cover on the Tibetan Plateau by using EOF analysis[J]. J Glaciology and Geocryology, 20(1):64-67. DOI:10.1088/0256-307X/16/9/027.<br/>柯长青, 李培基, 1998.用EOF方法研究青藏高原积雪深度分布与变化[J].冰川冻土, 20(1):64-67.
[24]Li X L, Zhang F M, Wang C H, 2012. A comparative analysis of snow depth ground observation data and remote sensing snow depth data in China[J]. J Glaciology and Geocryology, 34(4):755-764.<br/>李小兰, 张飞民, 王澄海, 2012.中国地区地面观测积雪深度和遥感雪深资料的对比分析[J].冰川冻土, 34(4):755-764.
[25]Liang X Y, Liu Y M, Wu G X, 2005. Effect of Tibetan Plateau on the site of onset and intensity of the Asian Summer Monsoon[J]. Acta Meteor Sinica, 63(5):799-805. DOI:10.3321/j.issn:0577-6619.2005.05.023.<br/>梁潇云, 刘屹岷, 吴国雄, 2005.青藏高原对亚洲季风爆发位置及强度的影响[J].气象学报, 63(5):799-805.
[26]Ma L J, 2008. Temporal and spatial variation characteristics of snow cover over the Tibetan Plateau in recent 50 years and its relationship with atmospheric circulation factors[D]. Beijing: Graduate University of Chinese Academy of Sciences, 68-76.<br/>马丽娟, 2008. 近50年青藏高原积雪的时空变化特征及其与大气环流因子的关系[D]. 北京: 中国科学院研究生院, 68-76.
[27]Shi N, 2002. Multivariate analysis method in meteorological research and forecast[M]. Beijing:Meteorological Press, 17-18.<br/>施能, 2002.气象科研与预报中的多元分析方法[M].北京:气象出版社, 17-18.
[28]Qin Z J, Hou S G, Wang Y T, et al, 2017. Spatio-temporal variability of winter snow cover over the Tibetan Plateau and its relation to Arctic Oscillation[J]. Geograp Res, 36(4):743-754. DOI:10.11821/dlyj201704012.<br/>覃郑婕, 侯书贵, 王叶堂, 等, 2017.青藏高原冬季积雪时空变化特征及其与北极涛动的关系[J].地理研究, 36(4):743-754.
[29]Wang Y D, 2014. Calculate regional rainfall using Voronoi diagram method based on ArcGIS[J]. Jilin Water Resources (6):58-60. DOI:10.3969/j.issn. 1009-2846.2014.06.017.<br/>王玉德, 2014.基于ArcGIS的泰森多边形法计算区域平均雨量[J].吉林水利(6):58-60.
[30]Wei Z G, Huang R H, Chen W, et al, 2002. Spatial distribution and variation characteristics of snow cover on the ground stations over the Tibetan Plateau[J]. Atmos Sci, 26(4):496-508. DOI:10.3878/j.issn. 1006-9895.2002.04.07.<br/>韦志刚, 黄荣辉, 陈文, 等, 2002.青藏高原地面站积雪的空间分布和年代际变化特征[J].大气科学, 26(4):496-508.
[31]Xu X Y, Wang Y F, 2016. Analysis of the influence of ENSO on snow depth over Qinghai-Xizang Plateau and its continuity[J]. Plateau Meteor, 35(1):1-12. DOI:10.7522/j.issn. 1000-0534.2014.00128.<br/>徐小玉, 王亚非, 2016. ENSO对青藏高原雪深的影响及持续性分析[J].高原气象, 35(1):1-12.
[32]Zhang H, Wen Y N, Liu A L, et al, 2006. Algorithm foundation of geographic information system[M]. Beijing:Science Press, 172-184.<br/>张宏, 温永宁, 刘爱利, 等, 2006.地理信息系统算法基础[M].北京:科学出版社, 172-184.
[33]Wu G X, Mao J Y, Duan A M, et al, 2004. Recent progress in the study on the impacts of Tibetan Plateau on Asian summer climate[J]. Acta Meteor Sinica, 62(5):528-540. DOI:10.3321/j.issn:0577-6619.2004.05.002.<br/>吴国雄, 毛江玉, 段安民, 等, 2004.青藏高原影响亚洲夏季气候研究的最新进展[J].气象学报, 62(5):528-540.
[34]Wu S H, Yin Y H, Zheng D, et al, 2005. Climate changes in the Tibetan Plateau during the last three decades[J]. Geograp Res, 60(1):3-11. DOI:10.3321/j.issn:0375-5444.2005.01.001.<br/>吴绍洪, 尹云鹤, 郑度, 等, 2005.青藏高原近30年气候变化趋势[J].地理学报, 60(1):3-11.
[35]Yang L H, 2011. Research and application of processing method for missing data[D]. Jingdezhen: Jingdezhen Ceramic Institute, 14-15.<br/>杨利华, 2011. 缺失数据的处理方法研究及应用[D]. 景德镇: 景德镇陶瓷学院, 14-15.
[36]Zhang R N, Zhang R H, Zuo Z Y, 2015. Winter snow cover variability over China and its relation to Arctic Oscillation[J]. Atmos Sci, 39 (3):634-642. DOI:10.3878/j.issn. 1006-9895.1405.14170.<br/>张若楠, 张人禾, 左志燕, 2015.中国冬季积雪变异及其与北极涛动的联系[J].大气科学, 39 (3):634-642.
[37]Zhong A H, Yan H S, Li Y Q, et al, 2010. Relationship between snow anomaly and atmospheric circulation anomaly over the Tibetan Plateau[J]. J Appl Meteor Sci, 21(1):37-46. DOI:10.3969/j.issn. 1001-7313.2010.01.005.<br/>钟爱华, 严华生, 李跃清, 等, 2010.青藏高原积雪异常与大气环流异常间关系分析[J].应用气象学报, 21(1):37-46.
Outlines

/