Comparative Analysis of Pan Evaporation Trends between the Summer Monsoon Transition Region and Other Regions of China

  • YANG Siqi ,
  • ZHANG Qiang ,
  • XI Xiaoxia ,
  • QIAO Liang
Expand
  • College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China;Institute of Arid Meteorology, CMA, Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province; Key Open Laboratory of Arid Climatic Change and Disaster Reduction of China Meteorological Administration, Lanzhou 730020, Gansu, China;Gansu Provincial Meteorological Bureau, Lanzhou 730020, Gansu, China;Gansu Provincial Meteorological Information and Technic Support and Equipment Center, Lanzhou 730020, Gansu, China

Received date: 2017-09-14

  Online published: 2018-08-28

Abstract

In this paper, Nanchang station, Dingxi station and Urumqi station were taken as representative stations of the summer monsoon region, the summer monsoon transition region and non-summer monsoon region. Based on the conventional observation data of Nanchang station, Dingxi station and Urumqi station from 1961 to 2010, the pan evaporation trends in different regions were compared and the reasons for their differences were analyzed. The results show that the pan evaporation trends varied greatly in different regions. The tendency rates of pan evaporation in Dingxi, Nanchang and Urumqi are 50.3, -150.7 and -206.1 mm·(10a)-1, respectively. Besides, by analyzing the sensitivity of meteorological factors, it was found that the pan evaporation is sensitive with different meteorological factors in different regions. In addition, combining the trends analysis and sensitivity analysis of the meteorological factors, the main factors that cause the differences of pan evaporation trend in different regions are annual precipitation, average low cloud cover and average wind speed. Due to the latitude that the north edge of the monsoon reached was lower and lower in recent years, the trend of precipitation, average low cloud cover and average wind speed in monsoon transition zone are contrary with these in other regions of China. Thus, the pan evaporation trend in monsoon transition zone are opposite to the pan evaporation trend in other regions of China.

Cite this article

YANG Siqi , ZHANG Qiang , XI Xiaoxia , QIAO Liang . Comparative Analysis of Pan Evaporation Trends between the Summer Monsoon Transition Region and Other Regions of China[J]. Plateau Meteorology, 2018 , 37(4) : 1017 -1024 . DOI: 10.7522/j.issn.1000-0534.2018.00006

References

[1]Brutsaert W, Parlange M B, 1998. Hydrological cycle explains the evaporation paradox[J]. Nature, 396(6706):30-31.
[2]Bre?a-Naranjo Q A, Laverde-Baraja M A, Pedrozo-Acu?a A, 2017. Changes in pan evaporation in Mexico from 1961 to 2010[J]. Int J Climatol, 37(1):204-213.
[3]Padmakumari B, Jaswal A K, Goswami B N, 2013. Decrease in evaporation over the Indian monsoon region:Implication on regional hydrological cycle[J]. Climatic Change, 121(4):787-799.
[4]Peterson T C, Golubev V S, Groisman P Y, 1995. Evaporation losing its strength[J]. Nature, 337(6551):678-688.
[5]Qian W H, Ding T, Hu H R, et al, 2009. An overview of dry-wet variability among monsoon-westerly regions and the monsoon northernmost marginal active zone in China[J]. Adv Atmos Sci, 26(4):630-641.
[6]Roderick M L, Farquhar G D, 2002. The cause of decreased pan evaporation over the past 50 years[J]. Science, 298(5597):1410-1411.
[7]Zhang H L, Zhang Q, Yue P, et al, 2016. Aridity over a semiarid zone in northern China and responses to the East Asian summer monsoon[J]. J Geophys Res, 121(23):13901-13918.
[8]Zhang Q, Xu C Y, Chen X H, 2011. Reference evapotranspiration changes in China:natural processes or human influences?[J]. Theoretical & Applied Climatology, 103(3/4):479-488.
[9]Zhang Q, Wang W Y, Wang S, et al, 2016. Increasing trend of pan evaporation over the semiarid loess plateau under a warming climate[J]. J Appl Meteor Climatol, 55:2007-2020.
[10]Bao Y S, Yan X L, Wang G Q, 2014. The mechanism of meteorological factors in the evaporation paradox of haihe river basin[J]. Journal of Water Resources and Water Engineering, 25(3):1-7.<br/>鲍振鑫, 严小林, 王国庆, 2014.气象因子在海河流域蒸发悖论中的作用机理[J].水资源与水工程学报, 25(3):1-7.
[11]Chen B L, Zuo H C, Gao X Q, 2013. A mathematical and physical model study on the pan evaporation[J]. Chinese Journal of Geophysics, 56(2):422-430.<br/>陈伯龙, 左洪超, 高晓清, 2013.20cm蒸发皿蒸发量的数学物理模型研究[J].地球物理学报, 56(2):422-430.
[12]Chen B L, Zuo H C, Gao X Q, et al, 2017. Study on pan evaporation and energy change process by micro-meteorological method[J]. Plateau Meteor, 36(1):87-97. DOI:10.7522/j.issn. 1000-0534.2016.00021.<br/>陈伯龙, 左洪超, 高晓清, 等, 2017.蒸发皿蒸发及能量变化过程的微气象观测研究[J].高原气象, 36(1):87-97.
[13]Guo C L, Ma Y M, Ma W Q, et al, 2017. Relationship between the actual evaporation and pan evaporation in the Gobi land surface of the Qomolangma region of the Qinghai-Xizang Plateau[J]. Plateau Meteor, 36(1):79-86. DOI:10.7522/j.issn. 1000-0534.2016.00020.<br/>郭晨露, 马耀明, 马伟强, 等, 2017.青藏高原珠峰地区戈壁下垫面上实际蒸散发量和蒸发皿蒸发量的关系研究[J].高原气象, 36(1):79-86.
[14]Liu M, Shen Y J, Zeng Y, et al, 2009. Trends and causes of evaporation of evaporation in China in the past 50 years[J]. Acta Geographica Sinica, 64(3):259-269.<br/>刘敏, 沈彦俊, 曾燕, 等, 2009.近50年中国蒸发皿蒸发量变化趋势及原因[J].地理学报, 64(3):259-269.
[15]Liu B, Ma Z G, Feng J M, 2008. The relationship between pan evaporation and actual evaporation in xinjiang region since 1960[J]. Acta Geographica Sinica, 63(11):1131-1139.<br/>刘波, 马柱国, 冯锦明, 2008.1960年以来新疆地区蒸发皿蒸发与实际蒸发之间的关系[J].地理学报, 63(11):1131-1139.
[16]Lu L, Qiao M, Zhou S B, 2011. Characteristics of pan evaporation changes during 1960-2009 in Weigan river Basin, Xinjiang[J]. Progress in Geography, 30(3):306-312.<br/>卢磊, 乔木, 周生斌, 等, 2011.1960-2000年新疆渭干河流域蒸发皿蒸发量变化特征[J].地理科学进展, 30(3):306-312.
[17]Shi J, Cui L L, Zhou W D, 2008. Change trend of climatic factors in the Yangtze River Delta from 1959 to 2005[J]. Res Sci, 30(12):1803-1810.<br/>史军, 崔林丽, 周伟东, 2008.1959-2005年长江三角洲气候要素变化趋势分析[J].资源科学, 30(12):1803-1810.
[18]Tang X, Sun G W, Qian W H, 2007. Research on the north edge of Asian summer wind[M]. China Meteorological Press, 51-94.<br/>汤旭, 孙国武, 钱维宏, 2007.亚洲夏季风北边缘研究[M].气象出版社, 51-94.
[19]Wang Z L, Qin J X, Chen X H, 2010. Variation characteristics and impact factors of pan evaporation in Pearl River Basin, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 26(11):73-77.<br/>王兆礼, 覃杰香, 陈晓宏, 2010.珠江流域蒸发皿蒸发量的变化特征及其原因分析[J].农业工程学报, 26(11):73-77.
[20]Xie P, Chen X H, Wang Z L, 2008. The Changes of the pan evaporation and their influencing climate factors over the Dongjiang Basin[J]. Trop Geograp, 28(4):306-310.<br/>谢平, 陈晓宏, 王兆礼, 等, 2008.东江流域蒸发皿蒸发量及其影响因子的变化特征分析[J].热带地理, 28(4):306-310.
[21]Yang F L, Rong Y S, Yang F G, 2014. The changes of the pan evaporation and their influencing climate factors in Sichuan basin[J]. Protect Water, 30(3):38-44.<br/>杨甫乐, 荣艳淑, 杨甫光, 2014.四川盆地蒸发皿蒸发量变化趋势及影响因子分析[J].水资源保护, 30(3):38-44.
[22]Zhang Q, Wang S, 2007. Study on the water surface water process in arid and semi-arid areas[J]. Arid Meteor, 25(2):1-4.<br/>张强, 王胜, 2007.关于干旱和半干旱区陆面水分过程的研究[J].干旱气象, 25(2):1-4.
[23]Zhang Q, Zhang Z X, Wen X M, et al, 2011. Comparisons of observational methods of land surface evapotranspiration and their influence factors[J]. Adv Earth Sci, 26(5):538-547.<br/>张强, 张之贤, 问晓梅, 等, 2011.陆面蒸散量观测方法比较分析及其影响因素研究[J].地球科学进展, 26(5):538-547.
[24]Zhang T T, Zhang X P, Wu H W, et al, 2013. Analysis of pan evaporation trend and its influence factors in Xiangjiang River Basin[J]. Adv Climate Change Res, 9(1):37-42.<br/>张婷婷, 章新平, 吴华武, 等, 2013.湘江流域蒸发皿蒸发量的变化趋势及原因分析[J].气候变化研究进展, 9(1):37-42.
[25]Zuo H C, Li D L, Hu Y Q, et al, 2005. Change trend of climate in China over the past 40 years and its relationship with the change of pan evaporation[J]. Chinese Science Bull, 50(11):1125-1130.<br/>左洪超, 李栋梁, 胡隐樵, 等, 2005.近40a中国气候变化趋势及其同蒸发皿观测的蒸发量变化的关系[J].科学通报, 50(11):1125-1130.
Outlines

/