Method Study on Identification of Radio-Frequency Interference Signal from Airborne Microwave Radiometer

  • WANG Wan ,
  • LEI Hengchi ,
  • WANG Zhaoyu ,
  • GUO Xiaojun ,
  • NIE Haohao
Expand
  • TianJin Weather Modification Office, TianJin 300074, China;Key Laboratory for Cloud Physics of China Meteorological Administration, Beijing 100081, China;Key Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Received date: 2017-07-06

  Online published: 2018-08-28

Abstract

Radio-frequency interference (RFI) signals were found in the brightness temperature datas of G-band water Vapor Radiometer (GVR). It is necessary to identify and correct the interference datas for better use. Based on the analysis of the applicability of various RFI identification methods of GVR data, the RFI recognition and correction method for GVR was proposed according to the principle of GVR detection and calibration. This method is used to identify the RFI from GVR brightness temperature datas on November 20, 2016 and the results show that:(1)The method works well for identifying the RFI from the brightness temperature datas of GVR different channels; (2) RFI signals exist in multiple channels and have no regular distribution in spatial and temporal that brings great difficulties to determine the source of RFI; (3) In addition to a few signals exist in the form of isolated points, majority of RFI signals in the brightness temperature datas exist in the form of continuity points. The more the continuity interference points are, the worse the correction results are. The datas are recommended to be eliminated when there are many continuity interference points. The retrival results analysis of before and after correction of RFI from GVR datas show that most of the PWV (Precipitable Water Vapor) and LWP (Liquid Water Path) values are overestimated because of the RFI and the correction of individual channels, which has different effects on the retrival results.

Cite this article

WANG Wan , LEI Hengchi , WANG Zhaoyu , GUO Xiaojun , NIE Haohao . Method Study on Identification of Radio-Frequency Interference Signal from Airborne Microwave Radiometer[J]. Plateau Meteorology, 2018 , 37(4) : 1033 -1041 . DOI: 10.7522/j.issn.1000-0534.2017.00084

References

[1]Adams I S, Bettenhausen M H, Gaiser P W, et al, 2010. Identification of ocean-Kflectsd radio-frequency interference using MndSat retrieval chi-square probability[J]. IEEE Geoscience and Remote Sensing Letters, 7(2):406-410. DOI:KU109/LGRS. 2009.2037446.
[2]Pazmany A L, Feb. 28-March 8, 2006. An operational G-band (183 GHz) water vapor radiometer (Submitted), Proc. 9th Specialist Meeting on Microwave and Remote Sensing Applications, San Juan, Puerto Rico.
[3]Feng C C, Zou X L, Zhao J, 2016. Detection of radio-frequency interference signals from AMSR-E data over the United States with snow covered[J]. Frontiers of Earth Science, 10(2):195-204.
[4]Ellingson S W, Johnson J T, 2006. A polarimetric survey of radio-frequency interference in C-and X-bands in the continental United States using WindSat radiometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 44(3):540-548.
[5]Liljegren J C, Cadeddu M P, Pazmany A, Feb. 28-March 8, 2006. Retrievals of atmospheric temperature and water vapor profiles in the Arctic (Submitted), Proc. 9th Specialist Meeting on Microwave and Remote Sensing Applications, San Juan, Puerto Rico.
[6]Li L, Njoku E, Im E, et al, 2004. A preliminary survey of radio-frequency interferenceover the U. S. in Aqua AMSR-E data[J]. IEEE Trans Geosci Remote Sens, 42(2):380-390.
[7]Li L, Gaiser P W, Bettenhausen M, et al, 2006. WindSat radio-frequency interference signature and its identification over land and ocean[J]. IEEE Trans Geosci Remote Sens, 44(3):530-539.
[8]Njoku B, Ashcroft P, Chan T, et al, 2005. Global survey and statistics of radio-frequency interference in AMSR-E land observations[J]. IEEE Trans Geosci Remote Sens, 43(5):938-947.
[9]Pazmany A L, 2007. A compact 183-GHz radiometer for water vapor and liquid water sensing[J]. IEEE Trans Geosci Remote Sens, 45(7):2202-2206.
[10]Zuidema P, Leon D, Pazmany A, et al, 2012. Aircraft millimeter-wave passive sensing of cloud liquid water and water vapor during VOCALS-Rex[J]. Atmos Chem Phys, 12:355-369.
[11]Truesdale D, 2013. A probability distribution method detecting radio-frequency interference in WindSat observations[J]. IEEE Trans Geosci Remote Sens, 51(6):3780-3788.
[12]Wu Y, Weng F Z, 2011. Detection and correcdon of AMSR-E Radio-Frequency Interference[J]. Acta Meteor Sinica, 25(5):669-681.
[13]Wu Y, Weng F Z, 2014. Applications of an AMSR-E RFI detection and correction algorithm in 1-DVAR over land[J]. J Meteor Res, 28(4):645-655.
[14]Zou X, Zhao J, Weng F Z, et al, 2012. Detection of radio-frequency interference signal over land from FY-3B microwave radiation imager[J]. IEEE Trans Geosci Remote Sens, 50(12):4994-5003. DOI:10.1109/TGRS. 2012.2191792.
[15]ZhaoJ, Zou X, Weng F Z, 2013. MndSat radio-frequency interference signature and its identification over Greenland and Antarctic[J]. IEEE Trans Geosci Remote Sens, 51(9):4830-4839.
[16]Feng C C, Zhao H, 2015. Identification of radio-frequency interference signal from FY-3B microwave radiation imager over ocean[J]. J Remote Sens, 19(3):465-475. DOI:10.11834/jrs.20154056.<br/>冯呈呈, 赵虹, 2015. FY-3B微波成像仪海洋数据中无线电干扰信号识别[J].遥感学报, 19(3):465-475.
[17]Guan L, Zhang S B, 2014. Source analysis of radio-frequency interference over europe land from advanced microwave scanning radiometer[J]. Acta Optica Sinica, 34(7):0728004-1-0728004-7. DOI:10.3799/AOS201434.0729004.<br/>官莉, 张思勃, 2014.星载微波辐射计欧洲大陆无线电频率干扰分析[J].光学学报, 34(7):0728004-1-0728004-7.
[18]Huang Z Y, Zhou Z M, Xu G R, et al, 2015. Monitoring application of hail storm event with the observation of wind profile radar and ground based microwave radiometer[J]. Plateau Meteor, 34(1):269-278. DOI:10.7522/j.issn. 1000-0534.2013.00130.<br/>黄治勇, 周志敏, 徐桂荣, 等, 2015.风廓线雷达和地基微波辐射计在冰雹天气监测中的应用[J].高原气象, 34(1):269-278.
[19]Li D S, Zhang C C, Xu H B, et al, 2002. Status and prospects of weather modification[M]. Beijing:China Meteorological Press, 92.<br/>李大山, 章澄昌, 许焕斌, 等, 2002.人工影响天气现状与展望[M].北京:气象出版社, 92.
[20]Lei H C, Wei Z, Shen Z L, et al, 2003. Measurement of column cloud liquid water content by airborne upward-looking microwave radiometer(Ⅰ):Instrument and Its Calibration[J]. Plateau Meteor, 22(6):551-557.<br/>雷恒池, 魏重, 沈志来, 等, 2003.机载微波辐射计测云液水含量Ⅰ:仪器和标定[J].高原气象, 22(6):551-557.
[21]Jiang F, Wei Z, Lei H C, et al, 2004. Measurement of column cloud liquid water content by airborne upward-looking microwave radiometer (Ⅱ):Retrieval method[J]. Plateau Meteor, 23(2):33-39.<br/>江芳, 魏重, 雷恒池, 等, 2004.机载微波辐射计测云液态水含量Ⅱ:反演方法[J].高原气象, 23(2):33-39.
[22]Liu Y Y, Mao J T, Liu J, et al, 2010. Research of BP neural network for microwave radiometer remote sensing retrieval temperature, retrieval humidity, cloud liquit water profiles[J]. Plateau Meteor, 29(6):1514-1523.<br/>刘亚亚, 毛节泰, 刘钧, 等, 2010.地基微波辐射计遥感大气廓线的BP神经网络反演方法研究[J].高原气象, 29(6):1514-1523.
[23]Wu J H, Li C S, Zhou W X, 1998. Comparison between the noise-suppressing abilities of the median filters and the average filters[J]. Journal of NanChang University (Engineering &amp; Technology), 20(1):32-35.<br/>吴建华, 李迟生, 周卫星, 1998.中值滤波与均值滤波的去噪性能比较[J].南昌大学学报(工科版), 20(1):32-35.
[24]Zou X L, Weng F Z, Tian X X, 2015. An effective mitigation of radio frequency interference over land by adding a new C-band on AMSR2[J]. Adv Meteor Sci Technol, 5(2):35-41. DOI:10.3969/j.issn. 2095-1973.2015.02.006.<br/>邹晓蕾, 翁富忠, 田小旭, 2015. AMSR2仪器上新增设的C波段通道对陆地无线电频率干扰的有效缓解[J].气象科技进展, 5(2):35-41.
[25]Zou X L, Zhao J, Weng F Z, et al, 2013. Detection of radio-frequency interference signal over land from FY-3B microwave radiation imager (MWRI)[J]. Adv Meteor Sci Technol, 3(4):144-153.<br/>邹晓蕾, 赵娟, 翁富忠, 等, 2013.风云三号B星微波成像仪资料在陆地上的无线电频率干扰信号的识别[J].气象科技进展, 3(4):144-153.
Outlines

/