The Characteristics of Ice Cloud Properties Derived from Satellite Data in Northwest China

  • LIN Tong ,
  • ZHENG Youfei ,
  • LI Te ,
  • WANG Liwen
Expand
  • The School of Atmospheric Physics, Nanjing University of Information & Technology, Nanjing 210044, Jiangsu, China;Jiang Su Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing 210044, Jiangsu, China;The School of Atmospheric Physics, Nanjing University of Information & Technology, Nanjing 210044, Jiangsu, China

Received date: 2017-08-23

  Online published: 2018-08-28

Abstract

The Northwest China probability distribution of ice cloud occurrence frequency, ice water content and ice cloud effective radius were presented based on DARDAR data coalesce from Cloud-Aerosols Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat Satellite which come from A-Train Satellite formation during the period from December 2012 to November 2016, the distribution and vertical structures were discussed and analyzed. The results show that, the occurrence frequency of ice cloud is 55.1% over the last four years and the occurrence frequency of ice cloud in spring is mostly greater than 70% apart from the Midwest area of Hexi-Inner Mongolia, it has obvious seasonal variation. The amplitude of season variation is bigger in 2015 and 2016 than the first two years, and ice cloud occurrence frequency generally small in the desert area. The high occurrence frequency of ice cloud area is in the northeastern part of the Qinghai-Tibetan Plateau because of the special terrain; The occurrence frequency of ice cloud is both bigger in spring, autumn and winter but only smaller in summer at the northeastern of the Qinghai-Tibetan Plateau, because the warm and humid air from the Indian Ocean is blocked by the southern mountain of the plateau, which leads to a lower occurrence frequency of ice cloud in the northeastern of plateau in summer. The ice water content is almost has no ice water distribution above 13 km, ice water content in Northwest China is the biggest in summer and almost has no ice water distribution below 5 km because of the high temperature in summer that make ice cloud not easy to form in the lower floors, and the ice water content is generally smaller in autumn and winter. The difference of ice water content between different regions in northwest of China is relatively large; Ice cloud effective radius and ice water content had a similar trend in the whole of Northwest China area and five different sections, which are bigger in spring and summer and smaller in winter and autumn; Especially in summer, ice effective radius is generally larger, but ice cloud effective radius is relatively small in the numerical value of ice water content area 37°N-39°N because of the higher temperature in summer. The difference of the Ice cloud effective radius between different regions in Northwest China is relatively larger, the Ice cloud effective radius is minimum in The east seasonal wind areas of Northwest China and biggest in Northern Xinjiang and the midwest of Qilian Mountain-Qinghai area.

Cite this article

LIN Tong , ZHENG Youfei , LI Te , WANG Liwen . The Characteristics of Ice Cloud Properties Derived from Satellite Data in Northwest China[J]. Plateau Meteorology, 2018 , 37(4) : 1051 -1060 . DOI: 10.7522/j.issn.1000-0534.2017.00088

References

[1]Brown P R A, Francis P N, 1995. Improved measurements of the ice water content in cirrus using a total-water probe[J]. J Atmos Ocean Technol, 12(2):1139-1145.
[2]Chen B, Liu X, 2005. Seasonal migration of cirrus clouds over the Asian Monsoon regions and the Tibetan Plateau measured from MODIS/Terra[J]. Geophys Res Lett, 32(1):L01804. DOI:10.1029/2004GL020868.
[3]Delano? J, Hogan R J, 2008. A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer[J]. J Geophys Res, 113(D7):1829-1836.
[4]Delano? J, Hogan R J, 2010. Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds[J]. J Geophys Res, 115(4):1307-1314.
[5]Eliasson S, Buehler S A, Milz M, et al, 2010. Assessing observed and modelled spatial distributions of ice water path using satellite data[J]. Atmos Chem Phys, 11(1):375-391.
[6]Eliasson S, Holl G, Buehler S A, et al, 2013. Systematic and random errors between collocated satellite ice water path observations[J]. J Geophys Res Atmos, 118(6):2629-2642.
[7]Foot J S, 1988. Some observations of the optical properties of clouds. Ⅰ:Stratocumulus[J]. Quart J Roy Meteor Soc, 114(479):129-144.
[8]Francis P N, Hignett P, Macke A, 1998. The retrieval of cirrus cloud properties from aircraft multi-spectral reflectance measurements during EUCREX'93[J]. Quart J Roy Meteor Soc, 124:1273-1291. DOI:10.1002/qj.49712454812.
[9]Heymsfield A J, Protat A, Bouniol D, et al, 2008. Testing IWC retrieval methods using radar and ancillary measurements with in situ data[J]. J Appl Meteor Climatol, 47(1):135-163.
[10]Hogan R J, 2006. Fast approximate calculation of multiply scattered lidar returns[J]. Applied Optics, 45(23):5984-5992.
[11]Hong Y, Liu G, 2015. The characteristics of ice cloud properties derived from CloudSat and CALIPSO measurements[J]. J Climate, 28(9):3880-3901.
[12]Huang J, Lin B, Minnis P, et al, 2006. Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia[J]. Geophys Res Lett, 33(19):L19802. DOI:10.1029/2006GL026561.
[13]Liou K N, 1986. Influence of cirrus clouds on weather and climate processes:A global perspective[J]. Mon Wea Rev, 114(6):1167-1199.
[14]Liou K N, Bohren C, 1980. An introduction to atmospheric radiation[J]. Physics Today, 26(7):66-67.
[15]Liu Z, Omar A H, Hu Y, et al, 2005. CALIOP algorithm theoretical basis document-Part 3: Scene classification algorithms[R/OL]. Release 1. 0, PC-SCI-202, NASA Langley Research Center, Hampton, VA, 56. [2017-04-22]. <a href="http://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202_Part3_v1.0.pdf">http://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202_Part3_v1.0.pdf</a>.
[16]Lynch D K, Sassen K, Del Genio A, et al, 2002, Cirrus[M]. Oxford:Oxford University Press.
[17]Mcfarquhar G M, Heymsfield A J, Spinhirne J, et al, 1999. Thin and subvisualtropopause tropical cirrus:Observations and radiative impacts[J]. J Atmos Sci, 57(12):1841-1853.
[18]Meyer K, Yang P, Gao B C, 2007. Tropical ice cloud optical depth, ice water path, and frequency fields inferred from the MODIS level-3 data[J]. Atmos Res, 85(2):171-182.
[19]Ockertbell M E, Hartmann D L, 1992. The effect of cloud type on earth's energy balance:Results for selected regions[J]. J Climate, 5(10):1157-1171.
[20]Sassen K, Wang Z, 2008. Classifying clouds around the globe with the CloudSat radar:1-year of results[J]. Geophys Res Lett, 35(4):228-236.
[21]Stein T H M, Delano J, Hogan R J, 2011. A comparison among four different retrieval methods for ice-cloud properties using data from CloudSat, CALIPSO, and MODIS[J]. J Appli Meteor Climatol, 50(9):1952-1969.
[22]Tian W, Tian H, Dhomse S, et al, 2011. A study of upper troposphere and lower stratosphere water vapor above the Tibetan Plateau using AIRS and MLS data[J]. Atmos Sci Lett, 12(2):233-239.
[23]Wu D L, Austin R T, Deng M, et al, 2009. Comparisons of global cloud ice from MLS, CloudSat, and correlative data sets[J]. J Geophys Res, 2009, 114(D8):D00A24. DOI:10.1029/2008JD009946.
[24]Wu D L, Jiang J H, Davis C P, 2006. EOS MLS cloud ice measurements and cloudy-sky radiative transfer model[J]. IEEE Trans Geosci Remote Sens, 44(5):1156-1165.
[25]Wyser K, 1998. The effective radius in ice clouds[J]. J Climate, 11(7):1793-1802.
[26]Chen C, Meng H, Jin R J, et al, 2014. Cloud macroscopic characteristics over North China based on CloudSat data[J]. Meteor Sci Technol, 42(2):294-301.<br/>陈超, 孟辉, 靳瑞军, 等, 2014.基于CloudSat云分类资料的华北地区云宏观特征分析[J].气象科技, 42(2):294-301.
[27]Chen Y H, Chen Y, Huang J P, et al, 2007. Distribution and variation trend of cloud over Northwestern China[J]. Plateau Meteor, 26(4):741-748.<br/>陈勇航, 陈艳, 黄建平, 等, 2007.中国西北地区云的分布及其变化趋势[J].高原气象, 26(4):741-748.
[28]Chen Y H, Huang J P, Chen C H, et al, 2005a. Temporal and spatial distributions of cloud water resources over Northwestern China[J]. Plateau Meteor, 24(6):905-912.<br/>陈勇航, 黄建平, 陈长和, 等, 2005a.西北地区空中云水资源的时空分布特征[J].高原气象, 24(6):905-912.
[29]Chen Y H, Huang J P, Wang T H, et al, 2005b. Temporal and spatial distributions of the different clouds over Northwestern China with the relation to precipitation[J]. J Appli Meteor, 16(6):717-727.<br/>陈勇航, 黄建平, 王天河, 等, 2005b.西北地区不同类型云的时空分布及其与降水的关系[J].应用气象学报, 16(6):717-727.
[30]Huo J, 2015. Physical properties of mid-level clouds based on CloudSat/CALIPSO data over land and sea[J]. Climatic Environ Res, 20 (1):30-40.<br/>霍娟, 2015.基于CloudSat/CALIPSO资料的海陆上空中云的物理属性分析[J].气候与环境研究, 20 (1):30-40.
[31]Liu J J, Chen B D, 2017. Cloud occurrence frequency and structure over the Qinghai-Tibetan Plateau from CloudSat observation[J]. Plateau Meteor, 36(3):632-642. DOI:10.7522/j.issn. 1000-0534.2017.00028.<br/>刘建军, 陈葆德, 2017.基于CloudSat卫星资料的青藏高原云系发生频率及其结构[J].高原气象, 36(3):632-642.
[32]Liu R X, Liu Y J, Du B Y, 2004. Cloud climatology characteristics of China from ISCCP data[J]. J Appli Meteor, 15(4):468-476.<br/>刘瑞霞, 刘玉洁, 杜秉玉, 2004.中国云气候特征的分析[J].应用气象学报, 15(4):468-476.
[33]Min M, Wang P C, Zong X M, 2011. Cirrus cloud distribution over China from Spaceborne Lidar observations[J]. Climatic Environ Res, 16(3):301-309.<br/>闵敏, 王普才, 宗雪梅, 2011.中国地区卷云分布特征的星载激光雷达遥感[J].气候与环境研究, 16(3):301-309.
[34]Peng J, Shen X Y, Wang Z L, et al, 2010. Overview of observational researches on cloud over China[J]. Anhui Agricultural Sciences, 38(24):13070-13073.<br/>彭杰, 沈新勇, 王志立, 等, 2010.中国地区云的观测研究进展[J].安徽农业科学, 38(24):13070-13073.
[35]Yang B Y, Zhang H, Peng J, et al, 2014. Analysis on global distribution characteristics of cloud microphysical and optical properties based on the CloudSat data[J]. Plateau Meteor, 33(4):1105-1118. DOI:10.7522/j.issn. 1000-0534.2013.00026.<br/>杨冰韵, 张华, 彭杰, 等, 2014.利用CloudSat卫星资料分析云微物理和光学性质的分布特征[J].高原气象, 33(4):1105-1118.
[36]Ye P L, Wang T H, Shang K Z, et al, 2014. Analysis of cloud vertical structure over Western China based on active satellite data[J]. Plateau Meteor, 33(4):977-98. DOI:10.7522/j.issn. 1000-0534.2013.00158.<br/>叶培龙, 王天河, 尚可政, 等, 2014.基于卫星资料的中国西部地区云垂直结构分析[J].高原气象, 33(4):977-98.
Outlines

/