Characteristics of Long-term Surface Heat Source and Its Climate Influence Factors in Nagqu Alpine Meadow

  • YAN Xiaoqiang ,
  • HU Zeyong ,
  • SUN Genhou ,
  • XIE Zhipeng ,
  • WANG Yidan ,
  • ZHENG Huixuan
Expand
  • Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China;Chengdu City Meteorological Office, Chengdu 610071, Sichuan, China;University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-03-06

  Online published: 2019-04-28

Abstract

Based on multi-level AWS data during 2001 to 2015 and eddy covariance data during 2011 to 2014 from Nagqu Station of Plateau Climate and Environment, the turbulent fluxes were calculated by a surface energy balance combination (CM) and eddy covariance method (EC). The EC fluxes are compared to the CM fluxes. Therefore, a long-term heat fluxes and surface heat source were obtained. The further results are also obtained:The energy closure ratio is close to 1 in spring, summer, autumn and throughout the year. In winter, the energy closure ratio is 1.34, because radiation observation value is small. From 2002 to 2015, sensible heat flux shows a ascend trend, while latent heat flux shows a descend trend. The surface heat sourceshows a descend trend. The analysis of the surface heat source indicates that it has a significant relationship withnet radiationflux, surface temperature, soil moisture and wind speed. Particularly, thesurfaceheat source has a significant response to net radiationflux throughout the year, the great influence of surface temperatureon the surface heat source in spring autumn and winter is strong, the great influence of soil moisture on the surface heat source in spring summer and autumn is strong, and the influence of wind speedson surface heat source isstrong in spring. The annual variation of sensible heat flux and latent heat flux are obvious. Sensible heat flux reaches the maximum value of the year in April and the minimum value in July, however, latent heat flux shows the maximum value in July and the minimum value in January.

Cite this article

YAN Xiaoqiang , HU Zeyong , SUN Genhou , XIE Zhipeng , WANG Yidan , ZHENG Huixuan . Characteristics of Long-term Surface Heat Source and Its Climate Influence Factors in Nagqu Alpine Meadow[J]. Plateau Meteorology, 2019 , 38(2) : 253 -263 . DOI: 10.7522/j.issn.1000-0534.2018.00091

References

[1]Beyrich F, Foken T, Herzog H J, 2002. Editorial:The LITFASS-98 experiment[J]. Theor Appl Climatol, 73(1):1-2.
[2]Duan A, Wang M, Lei Y, et al, 2013. Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980-2008[J]. Journal of Climate, 26(1):261-275.
[3]Duan A, Wu G, 2008. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part Ⅰ:Observations[J]. Journal of Climate, 21(13):3149-3164.
[4]Foken T, 1993. Study of the energy exchange processes over different types of surfaces during TARTEX-90'[M]. Offenbach am Main, Deutscher Wetterdienst, Forschung und Entwicklung, Arbeitsergebnisse.
[5]Foken T, 1998. Ergebnisse des LINEX-97/1 Experimentes[M]. Offenbach am Main, Deutscher Wetterdienst, Forschung und Entwicklung, Arbeitsergebnisse.
[6]Gentine P, Entekhabi D, Heusinkveld B, 2012. Systematic errors in ground heat flux estimation and their correction[J]. Water Resources Research, 48(48):9541.
[7]Gu L, Yao J, Hu Z, et al, 2015. Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau[J]. Atmospheric Research, 153:553-564.
[8]Li Z Q, Guirui Y U, Wen X, et al, 2005. Energy balance closure at China FLUX sites[J].中国科学:地球科学, 48(s1):51-62.
[9]Si D, Ding Y, 2013. Decadal Change in the Correlation Pattern between the Tibetan Plateau Winter Snow and the East Asian Summer Precipitation during 1979-2011[J]. Journal of Climate, 26(19):7622-7634.
[10]Sun Y Y, Liu J Y, Tsai H F, et al, 2014. The equatorial El Nino-Southern oscillation signatures observed by FORMOSAT-3/COSMIC from July 2006 to January 2012[J]. Terrestrial Atmospheric & Oceanic Sciences, 25(4):545-558.
[11]Tanaka K, Ishikawa H, Hayashi T, et al, 2001. Surface energy budget at Amdo on the Tibet Plateau using GAME/Tibet IO P98 data[J]. Journal of the Meteorological Society of Japan, 79(1B):505-517.
[12]Wilson K, Goldstein A, Falge E, et al, 2002. Energy balance closure at FLUXNET sites[J]. Agricultural & Forest Meteorology, 113(1/4):223-243.
[13]Yanai M, Li C F, Song Z S, 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian Summer Monsoon[J]. Journal of the Meteorological Society of Japan, 79(1):419-434.
[14]Yang K, Guo X F, Wu B Y, 2011. Recent trends in surface sensible heat flux on the Tibetan Plateau[J]. Science China (Earth Science), 54(1):19-28.
[15]Zheng F, Zhu J, 2015. Roles of initial ocean surface and subsurface states on successfully predicting 2006-2007 El Ni?o[J]. Ocean Science, 11(1):187-194.
[16]柏晶瑜, 徐祥德, 周玉淑, 等, 2003.春季青藏高原感热异常对长江中下游夏季降水影响的初步研究[J].应用气象学报, 14(3):363-368.
[17]葛骏, 余晔, 李振朝, 等, 2016.青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J].高原气象, 35(3):608-620. DOI:10.7522/j.issn.1000-0534.2016.00032.
[18]顾思南, 房佳蓓, 刘建勇, 2015.青藏高原感热通量的变化及与江淮流域降水异常的关系[J].气象科学, 35(3):305-311.
[19]解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象, 37(1):28-42. DOI:10.7522/j.issn.1000-0534.2017.00019.
[20]李栋梁, 李维京, 魏丽, 等, 2003.青藏高原地面感热及其异常的诊断分析[J].气候与环境研究, 8(1):71-83.
[21]李栋梁, 章基嘉, 吴洪宝, 1997.夏季青藏高原下垫面感热异常的诊断研究[J].高原气象, 16(4):367-375.
[22]李国平, 段廷扬, 吴贵芬, 2003.青藏高原西部的地面热源强度及地面热量平衡[J].地理科学, 23(1):13-18.
[23]李英, 李跃清, 赵兴炳, 2009.青藏高原东坡理塘地区近地层湍流特征研究[J].高原气象, 28(4):745-753.
[24]梁玲, 李跃清, 胡豪然, 等, 2013.青藏高原夏季感热异常与川渝地区降水关系的数值模拟[J].高原气象, 32(6):1538-1545. DOI:10.7522/j.issn.1000-0534.2013.00028.
[25]刘鹏飞, 刘树华, 胡非, 等, 2010.湍流通量计算方法和误差的比较研究[J].气象学报, 68(4):487-500.
[26]刘树华, 茅宇豪, 胡非, 等, 2009.不同下垫面湍流通量计算方法的比较研究[J].地球物理学报, 52(3):616-629.
[27]刘新, 李伟平, 吴国雄, 2002.夏季青藏高原加热和北半球环流年际变化的相关分析[J].气象学报, 60(3):267-277.
[28]齐冬梅, 李跃清, 2007.高原季风研究主要进展及其科学意义[J].干旱气象, 25(4):74-79.
[29]吴国雄, 毛江玉, 段安民, 等, 2004.青藏高原影响亚洲夏季气候研究的最新进展[J].气象学报, 62(5):528-540.
[30]徐国昌, 张志银, 1983.青藏高原对西北干旱气候形成的作用[J].高原气象, 2(2):9-16.
[31]严晓强, 胡泽勇, 孙根厚, 等, 2018.那曲高寒草地上四种地表通量计算方法的对比[J].高原气象, 37(2):358-370. DOI:10.7522/j.issn.1000-0534.2017.00067.
[32]阳坤, 郭晓峰, 武炳义, 2010.青藏高原地表感热通量的近期变化趋势[J].中国科学(地球科学), 40(7):923-932.
[33]叶笃正, 高由禧, 1979.青藏高原气象学[M].北京:科学出版社, 89-101.
[34]张浩鑫, 李维京, 李伟平, 2017.春夏季青藏高原与伊朗高原地表热通量的时空分布特征及相互联系[J].气象学报. 75(2):260-274.
[35]张杰, 李栋梁, 2009.青藏高原夏季凝结潜热时空分布特征分析[J].地学前缘, 16(1):326-334.
[36]张雪梅, 江志红, 兰博文, 2010.西北地区水汽输送特征及其年际、年代际变化[J].灾害学, 25(4):27-32.
[37]张艳, 钱永甫, 2002.青藏高原地面热源对亚洲季风爆发的热力影响[J].南京气象学院学报, 25(3):298-306.
[38]周俊前, 刘新, 李伟平, 等, 2016.青藏高原春季地表感热异常对西北地区东部降水变化的影响[J].高原气象, 35(4):845-853. DOI:10.7522/j.issn.1000-0634.2015.00053.
[39]朱乾根, 管兆勇, 1997.青藏高原感热加热异常与夏季低频环流的数值研究[J].南京气象学院学报, 20(2):186-192.
[40]竺夏英, 刘屹岷, 吴国雄, 2012.夏季青藏高原多种地表感热通量资料的评估[J].中国科学(地球科学), 42(7):1104-1112.
Outlines

/