Climate Trend of Upper Troposphere Temperature Revealed by Satellite Data over the Qinghai-Tibetan Plateau

  • MING Shaohui ,
  • QIN Zhengkun ,
  • HUANG Yu
Expand
  • Joint Center for Data Assimilation Research and Applications, College of atmospheric sciences, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;College of Math & Statics, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China

Received date: 2018-03-06

  Online published: 2019-04-28

Abstract

Satellite data has been an important database of climate research because of its global coverage. Based on the MSU/AMSU-A temperature data from 1982 to 2016, this paper analyzes the climate trend and its evolution of air temperature on the upper troposphere over the Tibetan Plateau, the ERA-Interim and NCEP-R2 reanalysis datasets are also included for the comparison. Results show that the air temperature on the upper troposphere is gradually warming over the Qinghai-Tibetan Plateau, which is in good agreement with the changes of atmospheric temperature at the corresponding levels of the two reanalysis datasets. Nonlinear trend analysis based on ensemble empirical mode decomposition (EEMD) reveals that the warming of the upper tropospheric bright temperature over the Tibetan Plateau starts from the central of the Qinghai-Tibetan Plateau, as the time evolved, the warming trend gradually spread to the periphery of the Tibetan Plateau, and eventually lead to the temperature become warmer for the whole study area. For the ERA-Interim data, the evolution of the climate trend for atmospheric temperature at 300 hPa has good similarity with that of the satellite observations, the warming phenomenon is first observed near the Qinghai-Tibetan Plateau and the warming trend gradually expands to surrounding areas. However, there are significantly differences between the trend of observations and that of the NCEP-R2 data, temperature at 300 hPa of the NCEP-R2 has obvious cooling trend in the first 20 years of the research period, the warming phenomenon only exists in the last 10 years.

Cite this article

MING Shaohui , QIN Zhengkun , HUANG Yu . Climate Trend of Upper Troposphere Temperature Revealed by Satellite Data over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2019 , 38(2) : 264 -277 . DOI: 10.7522/j.issn.1000-0534.2018.00120

References

[1]Bengtsson L, Hagemann S, Hodges K I, 2004. Can climate trends be calculated from reanalysis data?[J]. Journal of Geophysical Research Atmospheres, 109 (D11):839-856.
[2]Burrows M T, Schoeman D S, Buckley L B, et al, 2011. The pace of shifting climate in marine and terrestrial ecosystems[J]. Science, 334(6056):652-655.
[3]Christy J R, Spencer Roy W, McNider, et al, 1995. Reducing Noise in the MSU Daily Lower-Tropospheric Global Temperature Dataset[J]. Journal of Climate, 8(4):888-896.
[4]Fu Q, Johanson C M, 2005. Satellite-derived vertical dependence of tropical tropospheric temperature trends[J]. geophysical research letters, 32:L10703.
[5]Ji F, Wu Z, Huang J, et al, 2014. Evolution of land surface air temperature trend[J]. Nature Climate Change, 4(6):462-466.
[6]Liu X D, Chen B D, 2000. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology, 20(14):1729-1742.
[7]Liu X D, Zhang M F, 1998. Contemporary climatic change over the Qinghai-Xizang (Tibet) Plateau and its response to the greenhouse effect[J]. Chinese Geographical Science, 8(4):289-298.
[8]Kanamitsu M, Ebisuzaki W, Woollen J, et al, 2002. NCEP-DOE AMIP-Ⅱ Reanalysis (R-2), BAMS, 1631-1643.
[9]Pepin N C, Seidel D J, 2005. A global comparison of surface and free-air temperatures at high elevations[J]. Journal of Geophysical Research Atmospheres, 110:D03104.
[10]Randel W J, Smith A K, Wu F, et al, 2016. Stratospheric temperature trends over 1979-2015 derived from combined SSU, MLS, and SABER satellite observations[J]. Climate, 29:4843-4859.
[11]Simmons A, Uppala S, Dee D, et al, 2007. ERA-Interim:New ECMWF Reanalysis Products from 1989 Onwards[J]. ECMWF Newsletter, 110:29-35.
[12]Wu Z, Huang N E, 2008. Ensemble Empirical Mode Decomposition:a noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 1(1):1-41.
[13]Yanai M, Li C F, Song Z S, et al, 1992. Seasonal heating of the Tibetan Plateau and its effects of the evolution of the Asian summer monsoon[J]. Journal of the Meteorological Society of Japan, 70:319-351.
[14]Ye D Z, Wu G X, 1998. The role of the heat source of the Tibetan Plateau in the general circulation[J]. Meteorology and Atmospheric Physics, 67(1/4):181-198.
[15]You Q, Kang S, Pepin N, et al, 2010. Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data[J]. Global and Planetary Change, 71(1/2):124-133.
[16]Zhang Q, Kang S, Yan Y, 2006. Characteristics of spatial and temporal variations of monthly mean surface air temperature over Qinghai-Tibet Plateau[J]. Chinese Geographical Science, 16 (4):351-358.
[17]Zou C Z, Wang W, 2011. Intersatellite calibration of AMSU-A observations for weather and climate applications[J]. Journal of Geophysical Research Atmospheres, 116(D23):2053-2056.
[18]Zou C Z, Qian H F, 2016. Stratospheric temperature climate data record from merged SSU and AMSU-A Observations[J]. Journal of Geophysical Research, 33(9):1967-1984. doi:10.1175/jtech-d-16-0018.1.
[19]Zou C Z, Qian H, Wang W, et al, 2014. Recalibration and merging of SSU observations for stratospheric temperature trend studies[J]. Journal of Geophysical Research, 119(23):13180-13205.
[20]Zou C Z, Li J, 2015. NOAA MSU/AMSU-A mean layer temperature, climate algorithm theoretical basis document (C-ATBD), NOAA/NESDIS.
[21]边多, 杜军, 2006.近40年西藏"一江两河"流域气候变化特征[J].应用气象学报, 17(2):169-175.
[22]蔡英, 李栋梁, 汤懋苍, 等, 2003.青藏高原近50年来气温的年代际变化[J].高原气象, 22(5):464-470.
[23]程译萱, 范广洲, 张永莉, 等, 2018.青藏高原及周边地区垂直温度梯度特征及其成因分析[J].高原气象, 37(2):333-348. DOI:10.7522/j.issn.1000-0534.2017.00057.
[24]段思汝, 范广洲, 华维, 等, 2015.1979-2013年青藏高原上空温度变化特征[J].成都信息工程学院学报, 30(6):587-591.
[25]高世仰, 张杰, 罗琦, 2017.青藏高原非均匀下垫面热力输送系数的估算[J].高原气象, 36(3):596-609. DOI:10.7522/j.issn.1000-0534.2016.00060.
[26]郭艳君, 丁一汇, 2008.近50年来我国探空温度序列均一化及变化趋势[J].应用气象, 19(6):646-656.
[27]黄荣辉, 1985.夏季青藏高原上空热源异常对北半球大气环流异常的作用[J].气象学报, 43(2):208-220.
[28]江灏, 王可丽, 2000.青藏高原地表热状况的卫星资料分析[J].高原气象, 19(3):323-328.
[29]李刚, 张鹭, 2016.基于微波探测资料的全球大气亮温长期变化趋势研究[J].气象科学, 36(1):10-19.
[30]李生辰, 徐亮, 郭英香, 等, 2006.近34a青藏高原年气温变化[J].中国沙漠, 26(1):27-34.
[31]林振耀, 赵昕奕, 1996.青藏高原降水气温变化的空间特征[J].中国科学(D辑), 26(4):354-358.
[32]刘桂芳, 卢鹤立, 2010.1961-2005年来青藏高原主要气候因子的基本特征[J].地理研究, 29(12):2281-2288.
[33]牛涛, 陈隆勋, 王文, 2002.青藏高原冬季平均温度、湿度气候特征的REOF分析[J].应用气象学报, 13(5):671-681.
[34]马耀明, 胡泽勇, 田立德, 等, 2014.青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J].地球科学进展, 29(2):207-215.
[35]田红瑛, 田文寿, 雒佳丽, 等, 2014.青藏高原地区上对流层-下平流层区域水汽分布和变化特征[J].高原气象, 33(1):1-13. DOI:10.7522/j.issn.1000-0534.2013.00074.
[36]王前, 赵勇, 陈飞, 等, 2017.南亚高压的多模态特征及其与新疆夏季降水的联系[J].高原气象, 36(5):1209-1220. DOI:10.7522/j.issn.1000-0534.2016.00123.
[37]王荣英, 周顺武, 闫巨盛, 等, 2011.近30年青藏高原上空大气温度变化特征[J].高原山地气象研究, 31(1):1-5.
[38]王腾, 2014.青藏高原上空温度年代际变异特征分析[R].广州: 第31届中国气象学会年会S7中高层大气及其与对流层的耦合, 422-423.
[39]王颖, 任国玉, 2005.中国高空温度变化初步分析[J].气候与环境研究. 10(4):780-790.
[40]韦志刚, 黄荣辉, 董文杰, 2003.青藏高原气温和降水的年际和年代际变化[J].大气科学, 27(2):157-170.
[41]魏凤英, 2007.现代气候统计诊断与预测技术[M].北京:气象出版社, 36-55.
[42]吴国雄, 林海, 邹晓蕾, 等, 2014.全球气候变化研究与科学数据[J].地球科学进展, 29(1):15-22.
[43]徐影, 丁一汇, 赵宗慈, 2001.美国NCEP/NCAR近50年全球再分析资料在我国气候变化研究中可信度的初步分析[J].应用气象学报, 12(3):338-347.
[44]叶笃正, 高由禧, 1979.青藏高原气象学[M].北京:科学出版社, 1-278.
[45]于晓晶, 杜娟, 王敏仲, 等, 2018.青藏高原新增探空资料同化对南疆夏季降水预报的影响[J].高原气象, 37(1):13-27. DOI:10.7522/j.issn.1000-0534.2017.00034.
[46]周顺武, 张人禾, 2009.青藏高原地区上空NCEP/NCA R再分析温度和位势高度资料与观测资料的比较分析[J].气候与环境研究, 14(2):284-292.
[47]赵天保, 符淙斌, 柯宗建, 等, 2010.全球大气再分析资料的研究现状与进展[J].地球科学进展, 25(3):241-254.
[48]朱文琴, 陈隆勋, 周自江, 2001.现代青藏高原气候变化的几个特征[J].中国科学(地球科学), 31(增刊):327-334.
[49]邹成治, 高梅, 2008.交叉定标产生的NOAA卫星长期大气温度观测资料[J].应用气象学报, 19(5):582-587.
[50]邹晓蕾, 2012.极轨气象卫星微波温度探测仪资料的分辨率[J].气象科技进展, 2:38-41.
Outlines

/