Data Quality Analysis of X-band Dual Linear Polarization Radar on Qinghai-Tibetan Plateau

  • DU Muyun ,
  • WANG Bin ,
  • XIAO Yanjiao ,
  • FU Zhikang ,
  • ZHOU Lingli
Expand
  • Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, Hubei, China

Received date: 2018-04-05

  Online published: 2019-04-28

Abstract

In order to further study the mechanism of the Qinghai-Tibetan plateau eastward clouds which trigger the heavy rainfall in Yangtze river basin in summer, the research project group plans to make intensive observation on the cloud eastward movement of the plateau in the summer of 2018-2019 by using the plateau comprehensive observation network to obtain the new data of cloud precipitation physical processes including water vapor, cloud, precipitation particle phase distribution and so on. In this paper, based on precipitation observation data of X-band dual linear polarization radar at Ganzi, Sichuan province during the pre-observation test period from September to October in 2017, the observation data quality and its detection ability are presented. The analysis results indicate that the performance of the radar system is stable during that period. In general, the polarization radar data quality is good, and the corrected radar data can reflect the actual polarization characteristics of precipitation particles, which can lay a foundation for the follow-up of field observation experiment and the study on the parameterization scheme of cloud and precipitation physical process.

Cite this article

DU Muyun , WANG Bin , XIAO Yanjiao , FU Zhikang , ZHOU Lingli . Data Quality Analysis of X-band Dual Linear Polarization Radar on Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2019 , 38(2) : 278 -287 . DOI: 10.7522/j.issn.1000-0534.2018.00085

References

[1]Bringi V N, Chandrasekar V, 2001. Polarimetric Doppler Weather Radar:Principles and applications[M]. Cambridge University Press.
[2]Chen L S, Li Y, Cheng Z Q, 2010. An overview of research and forecasting on rainfall associated with landfalling tropical cyclones[J]. Advances in Atmospheric Sciences, 27:967-976.
[3]Gorgucci E, Scarchilli G, Chandrasekhar V, 1999. A procedure to calibrate multiparameter weather radar using properties of the rain medium[J]. IEEE Trans Geosci Remote Sens, 30:269-276.
[4]Gourley J, Kaney B, Maddox R, 2003. Evaluating the calibrations of radars: A software approach[C]. 31th Conference on Radar Meteorology, 459-462.
[5]Hu Z Q, Liu L P, 2014. Application of wavelet analysis in differential propagation phase shift data de-noising[J]. Advances in Atmospheric Sciences, 31(4):825-835.
[6]Liu L P, Hu Z Q, Fang W G, et al, 2010. Calibration and data quality analysis with mobile C-band polarimetric Radar[J]. Acta Meteorologica Sinica, 24(4):501-509.
[7]Park S G, Bringi V, 2005. Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part Ⅰ:Theoretical and empirical basis[J]. Journal of Atmospheric and Oceanic Technology, 22(11):1622-1632.
[8]Ryzhkov A V, Giangrande S E, Melnikov V M, et al, 2005. Calibration issues of dual-polarization Radar measurements[J]. Journal of Atmospheric and Oceanic Technology, 22(8):1138-1155.
[9]Ryzhkov A V, Zrnic D S, 1998. Discrimination between rain and snow with a polarimetric radar[J]. Journal of Applied Meteorology, 37:1228-1240.
[10]Yu R C, Xu Y P, Zhou T J, et al, 2007a. Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China[J]. Geophysical Research Letters, 34, L13703. DOI:10.1029/2007GL030315.
[11]Yu R C, Zhou T J, Xiong A Y, et al, 2007b. Diurnal variations of summer precipitation over contiguous China[J]. Geophysical Research Letters, 34, L01704. DOI:10.1029/2006GL028129.
[12]Zrnic D S, Melnikov V M, Carter J K, 2006. Calibrating differential reflectivity on the WSR-88D[J]. Journal of Atmospheric and Oceanic Technology, 23(6):944-951.
[13]曹俊武, 胡志群, 陈晓辉, 等, 2011.影响双线偏振雷达相位测量精度的分析[J].高原气象, 30(3):817-822.
[14]曹俊武, 刘黎平, 2007.双线偏振雷达判别降水粒子类型技术及其检验[J].高原气象, 26(1):116-127.
[15]曹俊武, 刘黎平, 陈晓辉, 等, 2006.3836C波段双线偏振多普勒雷达及其在一次降水过程中的应用研究[J].应用气象学报, 17(2):192-200.
[16]曹俊武, 刘黎平, 葛润生, 2005.模糊逻辑法在双线偏振雷达识别降水粒子相态中的研究[J].大气科学, 30(5):817-822.
[17]陈丹, 周长艳, 熊光明, 等, 2018.近53年四川盆地夏季暴雨变化特征分析[J].高原气象, 37(1):197-206. DOI:10.7522/j.issn.1000-0534.2017.00022
[18]杜牧云, 刘黎平, 胡志群, 2013a.双线偏振雷达差分反射率因子系统误差订正[J].高原气象, 32(4):1174-1185. DOI:10.7522/j.issn.1000-0534.2012.00084
[19]杜牧云, 刘黎平, 胡志群, 等, 2012.双线偏振雷达差分传播相移的小波滤波初探[J].暴雨灾害, 31(3):248-254.
[20]杜牧云, 刘黎平, 胡志群, 等, 2013b.双线偏振多普勒雷达资料质量分析[J].气象学报, 71(1):146-158.
[21]高文良, 郁淑华, 2018.高原涡诱发西南涡伴行个例的环境场与成因分析[J].高原气象, 37(1):54-67. DOI:10.7522/j.issn.1000-0534.2017.00020
[22]何宇翔, 吕达仁, 肖辉, 2009. X波段双线偏振雷达差分反射率的衰减订正[J].高原气象, 28(3):607-616.
[23]李超, 李跃清, 蒋兴文, 2017.夏季长生命史盆地涡活动对川渝季节降水的影响[J].高原气象, 36(3):685-696. DOI:10.7522/j.issn.1000-0534.2016.00064
[24]刘黎平, 王致君, 1996.双线偏振雷达探测的云和地物回波的特性及其识别方法[J].高原气象, 15(3):303-310.
[25]刘黎平, 王致君, 徐宝祥, 等, 1997.我国双线偏振雷达探测理论及应用研究[J].高原气象, 16(1):99-104.
[26]刘黎平, 郑佳锋, 阮征, 等, 2015.2014年青藏高原云和降水多种雷达综合观测试验及云特征初步分析结果[J].气象学报, 73(4):635-647.
[27]王毅, 何立富, 代刊, 等, 2017.集合敏感性方法在高原涡和西南涡引发暴雨过程中的应用[J].高原气象, 36(5):1245-1256. DOI:10.7522/j.issn.1000-0534.2016.00102
[28]王致君, 2002.偏振气象雷达发展现状及其应用潜力[J].高原气象, 21(5):495-500.
[29]王致君, 楚荣忠, 2007. X波段双通道同时收发式多普勒偏振天气雷达[J].高原气象, 26(1):135-140.
[30]魏庆, 胡志群, 刘黎平, 等, 2016. C波段偏振雷达数据预处理及在降水估计中的应用[J].高原气象, 35(1):231-243. DOI:10.7522/j.issn.1000-0534.2014.00131
[31]吴欢, 黄兴友, 2014. X波段双线偏振雷达回波强度衰减和地物回波识别订正[J].气象科学, 34(1):32-38.
[32]郁淑华, 高文良, 肖递祥, 等, 2018.一例伴随西南涡的入海高原涡持续活动成因分析[J].高原气象, 37(6):1616-1627. DOI:10.7522/j.issn.1000-0534.2018.00043
[33]赵世颖, 李柏, 陈晓辉, 等, 2015.基于交叉-平行法的双偏振雷达差分反射率硬件定标[J].气象科技, 43(5):775-782.
[34]庄薇, 刘黎平, 余燕群, 等, 2012.雷达地物回波模糊逻辑识别法的改进及效果检验[J].气象学报, 70(3):576-584.
Outlines

/